A generalization of Kruskal's theorem

What happens when you replace the Kruskal ranks with standard ranks in Kruskal's theorem?

Benjamin Lovitz* Fedor Petrov**

*Institute for Quantum Computing, University of Waterloo

**St. Petersburg State University; St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences

Northeastern University Theory Lunch

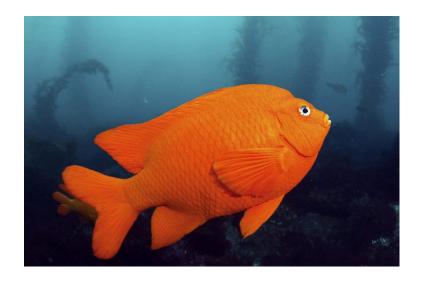
December 7, 2021

arXiv:2103.15633

Slides available at www.benjaminlovitz.com

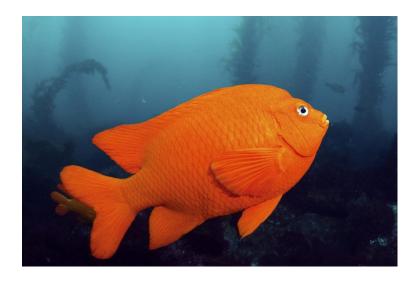
Outline

- Uniqueness of tensor decompositions
- Kruskal's theorem
- A generalization of Kruskal's theorem
- Splitting theorem



Outline

- Uniqueness of tensor decompositions
- Kruskal's theorem
- A generalization of Kruskal's theorem
- Splitting theorem



What is a matrix?

<u>Definition:</u> Let $n \in \mathbb{N}$ and $[n] := \{1, ..., n\}$.

Let \mathbb{F} be a field, and let X, Y, Z be \mathbb{F} -vector spaces of dimension at least 2.

A matrix is a 2-way array $\begin{bmatrix} 2 & 4 \\ 6 & 12 \end{bmatrix}$

Think of $X \otimes Y$ as the set of $\dim(X) \times \dim(Y)$ matrices

Think of $x \otimes y$ as the array $xy^T = (x_i y_j)_{(i,j)}$

We say that $T \in X \otimes Y$ is product, or rank-one if $T = x \otimes y$ for some $x \in X, y \in Y$

What is a matrix?

<u>Definition:</u> Let $n \in \mathbb{N}$ and $[n] := \{1, ..., n\}$.

Let \mathbb{F} be a field, and let X, Y, Z be \mathbb{F} -vector spaces of dimension at least 2.

A matrix is a 2-way array
$$\begin{bmatrix} 2 & 4 \\ 6 & 12 \end{bmatrix} = {1 \choose 3}(2 \ 4)$$

Think of $X \otimes Y$ as the set of $\dim(X) \times \dim(Y)$ matrices

Think of $x \otimes y$ as the array $xy^T = (x_i y_j)_{(i,j)}$

We say that $T \in X \otimes Y$ is product, or rank-one if $T = x \otimes y$ for some $x \in X, y \in Y$

What is a matrix tensor?

<u>Definition:</u> Let $n \in \mathbb{N}$ and $[n] := \{1, ..., n\}$.

Let \mathbb{F} be a field, and let X, Y, Z be \mathbb{F} -vector spaces of dimension at least 2.

A matrix tensor is a 3-way array $\begin{bmatrix} 15 & 36 \\ 4018 & 48 \end{bmatrix}$

Think of $X \otimes Y \otimes Z$ as the set of $\dim(X) \times \dim(Y) \times \dim(Z)$ tensors

Think of $x \otimes y \otimes z$ as the array $(x_i y_j z_k)_{(i,j,k)}$

We say that $T \in X \otimes Y \otimes Z$ is product, or rank-one if $T = x \otimes y \otimes z$ for some $x \in X, y \in Y, z \in Z$

What is a matrix tensor?

<u>Definition:</u> Let $n \in \mathbb{N}$ and $[n] := \{1, ..., n\}$.

Let \mathbb{F} be a field, and let X, Y, Z be \mathbb{F} -vector spaces of dimension at least 2.

A matrix tensor is a 3-way array $\begin{bmatrix} 15 \begin{bmatrix} 30 & 36 \\ 4018 \end{bmatrix} \\ 20 & 24 \end{bmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \otimes \begin{pmatrix} 3 \\ 4 \end{pmatrix} \otimes \begin{pmatrix} 5 \\ 6 \end{pmatrix}$

Think of $X \otimes Y \otimes Z$ as the set of $\dim(X) \times \dim(Y) \times \dim(Z)$ tensors

Think of $x \otimes y \otimes z$ as the array $(x_i y_j z_k)_{(i,j,k)}$

We say that $T \in X \otimes Y \otimes Z$ is product, or rank-one if $T = x \otimes y \otimes z$ for some $x \in X, y \in Y, z \in Z$

What is a matrix tensor?

<u>Definition:</u> Let $n \in \mathbb{N}$ and $[n] := \{1, ..., n\}$.

Let \mathbb{F} be a field, and let X, Y, Z be \mathbb{F} -vector spaces of dimension at least 2.

For
$$T \in X \otimes Y \otimes Z$$
, an expression $T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in X \otimes Y \otimes Z$

is called a decomposition of T into product tensors

rank(T): = min{ n: there exists a decomposition of T into n product tensors}

Uniqueness of tensor decompositions

<u>Definition:</u> Let $n \in \mathbb{N}$ and $[n] := \{1, ..., n\}$.

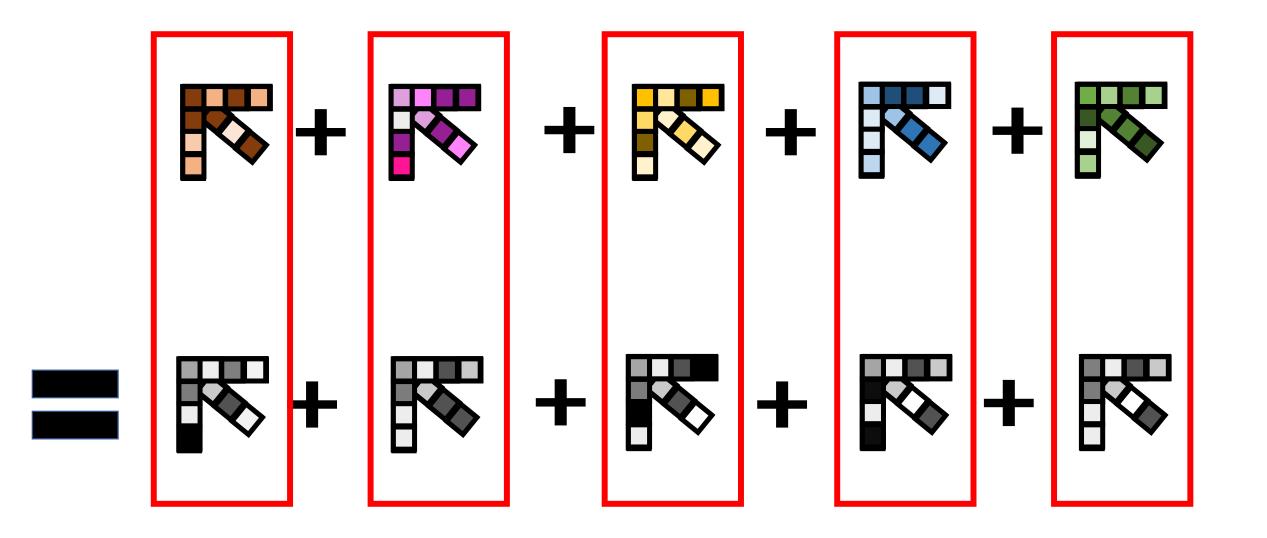
A tensor decomposition

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in X \otimes Y \otimes Z$$

is called the unique (rank) decomposition of T if rank(T)=n and for any other decomposition

$$T = \sum_{a \in [n]} x'_a \otimes y'_a \otimes z'_a \in X \otimes Y \otimes Z$$

there is a permutation $\sigma \in S_n$ such that $x_a \otimes y_a \otimes z_a = x'_{\sigma(a)} \otimes y'_{\sigma(a)} \otimes z'_{\sigma(a)}$ for all $a \in [n]$.



Applications

- Tensors → Physical data
- Tensor decomposition → Interpretation of data
- Unique decomposition → Unique interpretation

Example: Latent parameter learning

$\angle L$ is for *latent*

• Let A, B, C, L be discrete random variables such that A, B, C are conditionally independent, i.e.

$$Pr(a, b, c|l) = Pr(a|l) Pr(b|l) Pr(c|l)$$
 for all a, b, c, l .

- Goal: Given the probability vector Pr(A, B, C), determine Pr(A, B, C, L).
- Method:

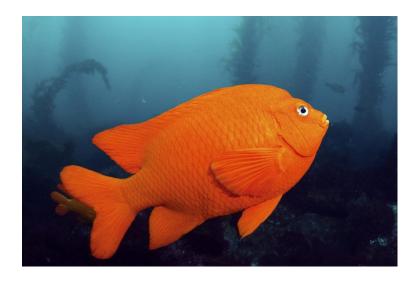
$$Pr(A, B, C) = \sum_{l} Pr(l) Pr(A, B, C|l) = \sum_{l} Pr(l) Pr(A|l) \otimes Pr(B|l) \otimes Pr(C|l)$$

... If Pr(A, B, C) has a unique decomposition, then we can recover Pr(A, B, C, l),

• <u>Applications:</u> Learning mixtures of spherical gaussians, phylogenetic tree reconstruction, hidden Markov models, orbit retrieval, blind signal separation, document topic models, ...

Outline

- Uniqueness of tensor decompositions
- Kruskal's theorem
- A generalization of Kruskal's theorem
- Splitting theorem



$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in X \otimes Y \otimes Z \qquad (1)$$

General flavor of these results:

We are handed a decomposition (1), and we want to know if it is the unique decomposition of T.

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in X \otimes Y \otimes Z \qquad (1)$$

Notation: When $S \subseteq [n]$, $d_x^S := dimspan\{x_a : a \in S\}$

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in X \otimes Y \otimes Z \qquad (1)$$

Notation: When $S \subseteq [n]$, $d_x^S := dimspan\{x_a : a \in S\}$

 d_y^S : = dimspan $\{y_a : a \in S\}$

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in X \otimes Y \otimes Z \qquad (1)$$

Notation: When $S \subseteq [n]$, $d_x^S := dimspan\{x_a : a \in S\}$

 d_y^S : = dimspan $\{y_a : a \in S\}$

 d_z^S : = dimspan $\{z_a : a \in S\}$

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in X \otimes Y \otimes Z \qquad (1)$$

Notation: When $S \subseteq [n]$, $d_x^S := dimspan\{x_a : a \in S\}$

$$T = e_1^{\otimes 3} + e_2^{\otimes 3} + e_3^{\otimes 3} + e_4^{\otimes 3} + (e_1 + e_2) \otimes (e_2 + e_3) \otimes (e_1 + e_4)$$

$$x_1 \otimes y_1 \otimes z_1 \qquad \dots \qquad x_5 \otimes y_5 \otimes z_5$$

For
$$S = \{1,2,5\}$$
, $d_x^S = 2$, $d_y^S = 3$, $d_z^S = 3$

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in X \otimes Y \otimes Z \qquad (1)$$

Notation: When $S \subseteq [n]$, $d_x^S := dimspan\{x_a : a \in S\}$

$$T = e_1^{\otimes 3} + e_2^{\otimes 3} + e_3^{\otimes 3} + e_4^{\otimes 3} + (e_1 + e_2) \otimes (e_2 + e_3) \otimes (e_1 + e_4)$$

$$x_1 \otimes y_1 \otimes z_1 \qquad \dots \qquad x_5 \otimes y_5 \otimes z_5$$

For
$$S = \{1,2,5\}$$
, $d_x^S = 2$, $d_y^S = 3$, $d_z^S = 3$

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in X \otimes Y \otimes Z \qquad (1)$$

Notation: When $S \subseteq [n]$, $d_x^S := dimspan\{x_a : a \in S\}$

$$T = e_1^{\otimes 3} + e_2^{\otimes 3} + e_3^{\otimes 3} + e_4^{\otimes 3} + (e_1 + e_2) \otimes (e_2 + e_3) \otimes (e_1 + e_4)$$

$$x_1 \otimes y_1 \otimes z_1 \qquad \dots \qquad x_5 \otimes y_5 \otimes z_5$$

For
$$S = \{1,2,5\}$$
, $d_x^S = 2$, $d_y^S = 3$, $d_z^S = 3$

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in X \otimes Y \otimes Z \qquad (1)$$

Notation: When $S \subseteq [n]$, $d_x^S := dimspan\{x_a : a \in S\}$

$$T = e_1^{\otimes 3} + e_2^{\otimes 3} + e_3^{\otimes 3} + e_4^{\otimes 3} + (e_1 + e_2) \otimes (e_2 + e_3) \otimes (e_1 + e_4)$$

$$x_1 \otimes y_1 \otimes z_1 \qquad \dots \qquad x_5 \otimes y_5 \otimes z_5$$

For
$$S = \{1,2,5\}$$
, $d_x^S = 2$, $d_y^S = 3$, $d_z^S = 3$

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in X \otimes Y \otimes Z \qquad (1)$$

Notation: When $S \subseteq [n]$, $d_x^S := dimspan\{x_a : a \in S\}$

<u>Definition:</u> The Kruskal rank of $\{x_1, ..., x_n\} \in X$ is the largest integer k_x such that for every subset $S \subseteq [n]$ of size $|S| = k_x$, it holds that $d_x^S = |S|$.

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in X \otimes Y \otimes Z \qquad (1)$$

Notation: When $S \subseteq [n]$, $d_x^S := dimspan\{x_a : a \in S\}$

<u>Definition:</u> The Kruskal rank of $\{x_1, ..., x_n\} \in X$ is the largest integer k_x such that for every subset $S \subseteq [n]$ of size $|S| = k_x$, it holds that

$$d_{x}^{S} = |S|.$$

$$T = e_1^{\otimes 3} + e_2^{\otimes 3} + e_3^{\otimes 3} + e_4^{\otimes 3} + (e_1 + e_2) \otimes (e_2 + e_3) \otimes (e_1 + e_4)$$

$$x_1 \otimes y_1 \otimes z_1 \qquad \dots \qquad x_5 \otimes y_5 \otimes z_5$$

$$\{x_1, \dots, x_5\} = \{e_1, e_2, e_3, e_4, e_1 + e_2\}, \qquad k_x = 2, \ d_x^{[5]} = 4.$$

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in X \otimes Y \otimes Z \qquad (1)$$

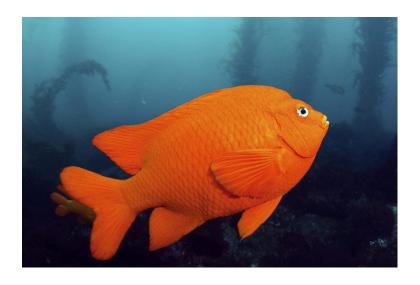
Notation: When $S \subseteq [n]$, $d_x^S := dimspan\{x_a : a \in S\}$

<u>Definition</u>: The Kruskal rank of $\{x_1, ..., x_n\} \in X$ is the largest integer k_x such that for every subset $S \subseteq [n]$ of size $|S| = k_x$, it holds that $d_x^S = |S|$.

<u>Kruskal's theorem:</u> If $2n \le k_x + k_y + k_z - 2$, then (1) is the unique decomposition of T.

Outline

- Uniqueness of tensor decompositions
- Kruskal's theorem
- A generalization of Kruskal's theorem
- Splitting theorem



Our generalization

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in X \otimes Y \otimes Z \qquad (1)$$

Idea: Replace Kruskal ranks k_{χ} with standard dimspans $d_{\chi}^{[n]}$.

Theorem [Gubkin-L-Petrov]: If

$$d_x^{[n]} = \operatorname{dimspan}\{x_1, \dots, x_n\}$$

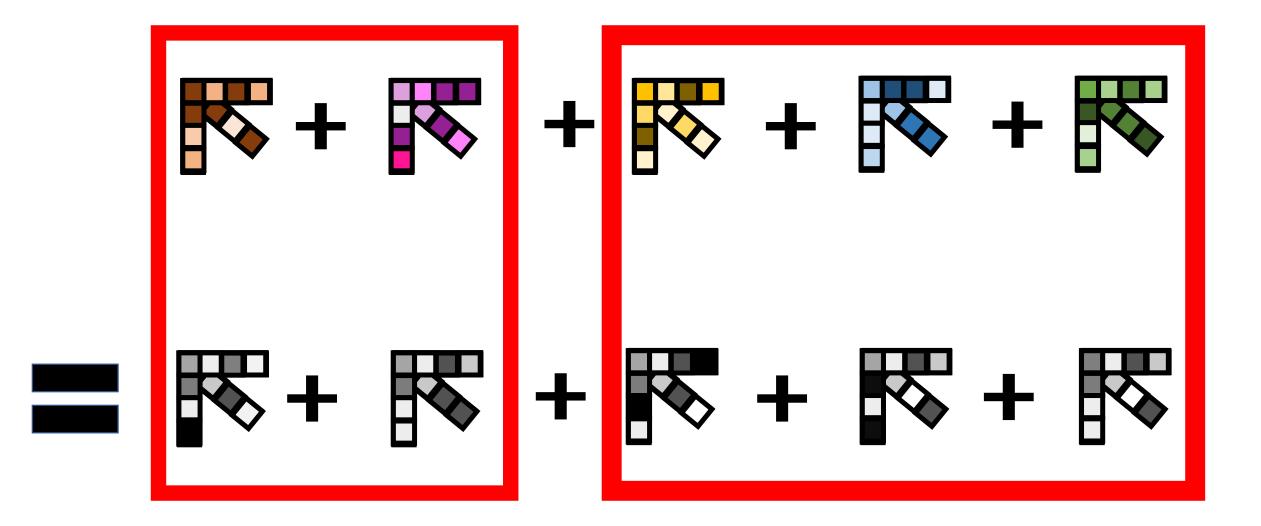
$$2n \le d_x^{[n]} + d_y^{[n]} + d_z^{[n]} - 2,$$

then for any other decomposition

$$T = \sum_{a \in [n]} x'_a \otimes y'_a \otimes z'_a \in X \otimes Y \otimes Z$$

there exist non-trivial subsets $S, R \subseteq [n]$ such that

$$\sum_{a \in S} x_a \otimes y_a \otimes z_a = \sum_{a \in R} x_a' \otimes y_a' \otimes z_a'$$



Our generalization

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in X \otimes Y \otimes Z \qquad (1)$$

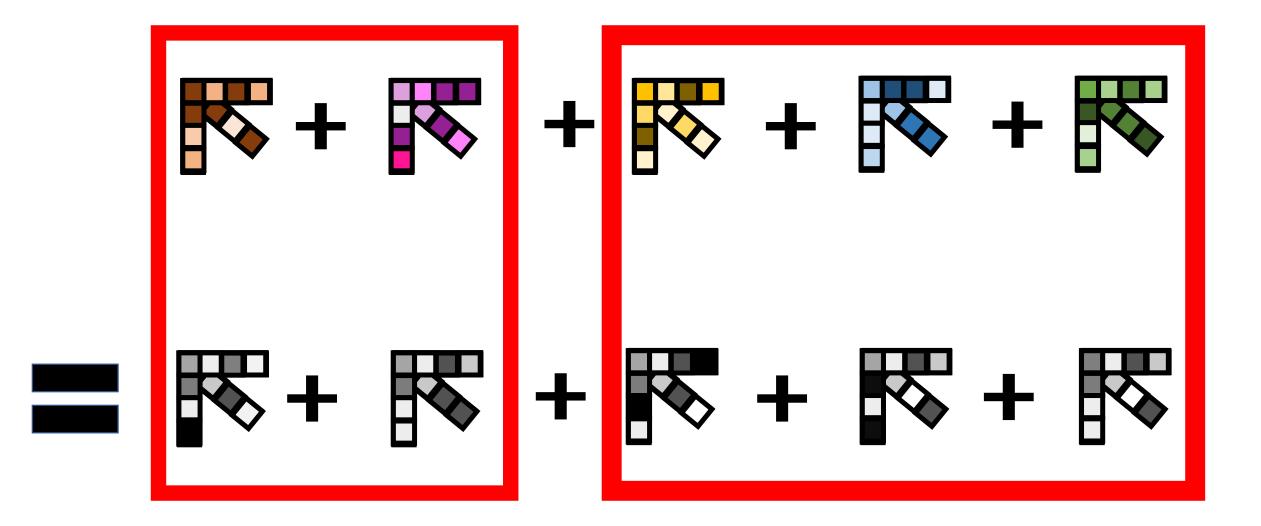
Idea: Replace Kruskal ranks k_x with standard dimspans d_x^S .

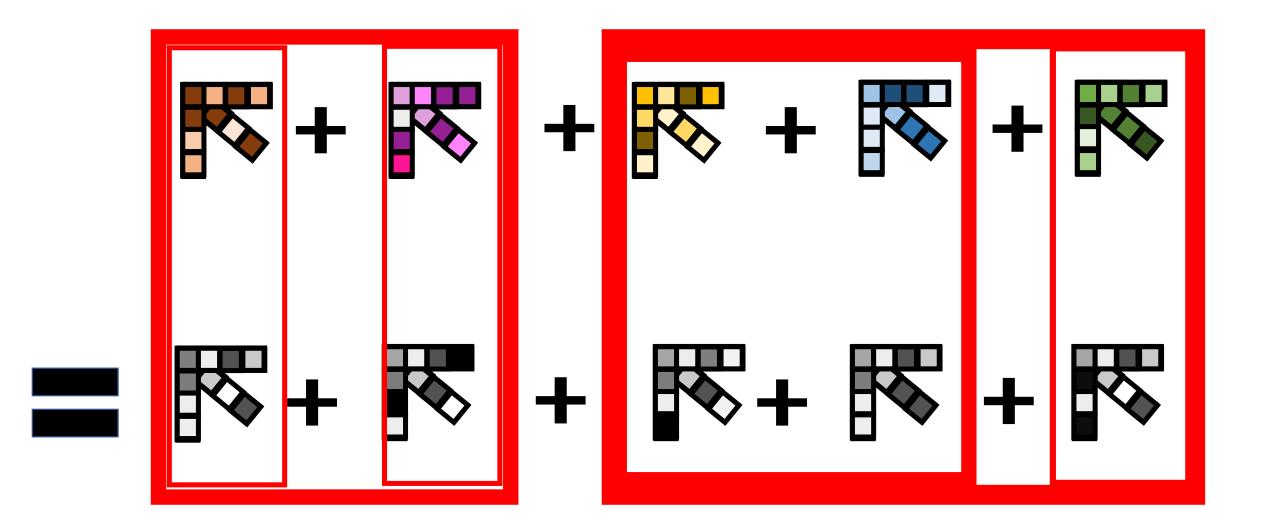
Theorem [Gubkin-L-Petrov]: If for every subset $S \subseteq [n]$ of size $|S| \ge 2$, it holds that

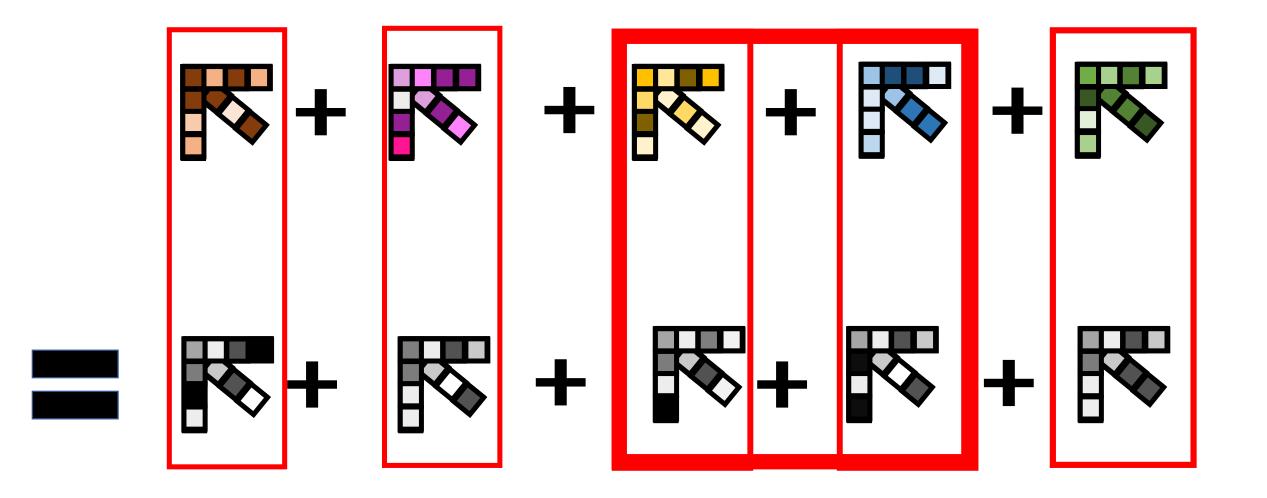
$$2|S| \le d_x^S + d_y^S + d_z^S - 2,$$

$$d_x^S = \text{dimspan}\{x_a : a \in S\}$$

then (1) is the unique decomposition of T.







Our generalization

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in X \otimes Y \otimes Z \qquad (1)$$

Idea: Replace Kruskal ranks k_x with standard dimspans d_x^S .

<u>Theorem [Gubkin-L-Petrov]:</u> If for every subset $S \subseteq [n]$ of size $|S| \ge 2$, it holds that

$$2|S| \le d_x^S + d_y^S + d_z^S - 2,$$

$$d_x^S = \text{dimspan}\{x_a : a \in S\}$$

then (1) is the unique decomposition of T.

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in X \otimes Y \otimes Z \qquad (1)$$

$$T = e_1^{\otimes 3} + e_2^{\otimes 3} + e_3^{\otimes 3} + e_4^{\otimes 3} + (e_1 + e_2) \otimes (e_2 + e_3) \otimes (e_1 + e_4)$$

$$x_1 \otimes y_1 \otimes z_1 \qquad \dots \qquad x_5 \otimes y_5 \otimes z_5$$

Example

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in X \otimes Y \otimes Z \qquad (1)$$

$$T = e_1^{\otimes 3} + e_2^{\otimes 3} + e_3^{\otimes 3} + e_4^{\otimes 3} + (e_1 + e_2) \otimes (e_2 + e_3) \otimes (e_1 + e_4)$$

$$x_1 \otimes y_1 \otimes z_1 \qquad \dots \qquad x_5 \otimes y_5 \otimes z_5$$

Kruskal's theorem does not certify uniqueness

$$10 = 2n \le k_x + k_y + k_z - 2 = 2 + 2 + 2 - 2 = 4$$

Example

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in X \otimes Y \otimes Z \qquad (1)$$

$$T = e_1^{\otimes 3} + e_2^{\otimes 3} + e_3^{\otimes 3} + e_4^{\otimes 3} + (e_1 + e_2) \otimes (e_2 + e_3) \otimes (e_1 + e_4)$$

$$x_1 \otimes y_1 \otimes z_1 \qquad \dots \qquad x_5 \otimes y_5 \otimes z_5$$

Theorem [Gubkin-L-Petrov]: If for every subset $S \subseteq [n]$ of size $|S| \ge 2$, it holds that $2|S| \le d_x^S + d_y^S + d_z^S - 2$, then (1) is the unique decomposition of T.

Example

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in X \otimes Y \otimes Z \qquad (1)$$

$$T = e_1^{\otimes 3} + e_2^{\otimes 3} + e_3^{\otimes 3} + e_4^{\otimes 3} + (e_1 + e_2) \otimes (e_2 + e_3) \otimes (e_1 + e_4)$$

$$x_1 \otimes y_1 \otimes z_1 \qquad \dots \qquad x_5 \otimes y_5 \otimes z_5$$

Theorem [Gubkin-L-Petrov]: If for every subset $S \subseteq [n]$ of size $|S| \ge 2$, it holds that

 $2|S| \le d_x^S + d_y^S + d_z^S - 2$, then (1) is the unique decomposition of T.

For
$$S = \{1,2\}$$
, $4 = 2|S| \le d_x^S + d_y^S + d_z^S - 2 = 2 + 2 + 2 - 2 = 4$

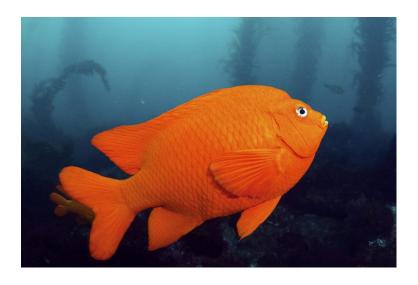
For
$$S = \{1,2,5\}, \qquad 6 = 2|S| \le d_x^S + d_y^S + d_z^S - 2 = 2 + 3 + 3 - 2 = 6$$

For
$$S = \{1,2,3,5\}, \quad 8 = 2|S| \le d_x^S + d_y^S + d_z^S - 2 = 3 + 3 + 4 - 2 = 8$$

For
$$S = [5]$$
, $10 = 2|[n]| \le d_x^{[n]} + d_y^{[n]} + d_z^{[n]} - 2 = 4 + 4 + 4 - 2 = 10$

Outline

- Uniqueness of tensor decompositions
- Kruskal's theorem
- A generalization of Kruskal's theorem
- Splitting theorem

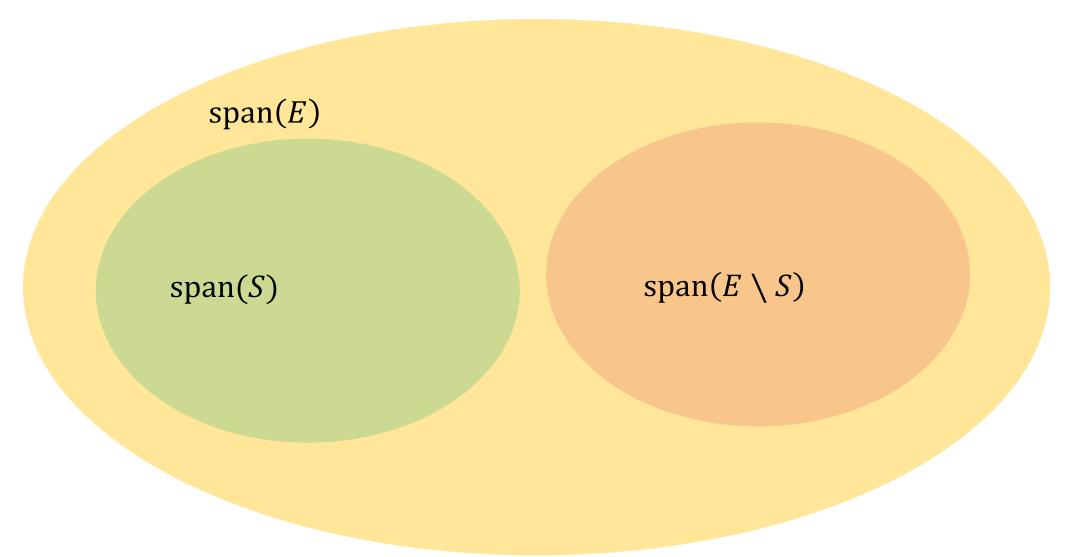


Splitting

<u>Definition:</u> A set of vectors $E = \{v_1, ..., v_n\}$ splits if there exists a non-trivial subset $S \subseteq E$ such that

$$\operatorname{span}(S) \cap \operatorname{span}(E \setminus S) = \{0\} \tag{2}$$

E splits if there exists $S \subseteq E$ such that $\operatorname{span}(S) \cap \operatorname{span}(E \setminus S) = \{0\}$



$$E = \{e_1, e_2, e_1 + e_2, e_3, e_4, e_3 + e_4\}$$

E splits if there exists $S \subseteq E$ such that $span(S) \cap span(E \setminus S) = \{0\}$

span(E)

 $span\{e_1, e_2, e_1+e_2\}$

 $span\{e_3, e_4, e_3+e_4\}$

E splits if there exists $S \subseteq E$ such that

$$E = \{e_1, e_2, e_1 + e_2, e_3, e_4, e_3 + e_4\} \cup \{e_1 + e_3\} \operatorname{span}(S) \cap \operatorname{span}(E \setminus S) = \{0\}$$

span(E)

$$span\{e_1, e_2, e_1+e_2, e_1+e_3\}$$
 e_3 $span\{e_3, e_4, e_3+e_4\}$

E splits if there exists $S \subseteq E$ such that

$$E = \{e_1, e_2, e_1 + e_2, e_3, e_4, e_3 + e_4\} \cup \{e_1 + e_3\} \operatorname{span}(S) \cap \operatorname{span}(E \setminus S) = \{0\}$$

span(E)

 $span\{e_1, e_2, e_1 + e_2\}$ e_1 $span\{e_3, e_4, e_3 + e_4, e_1 + e_3\}$

Splitting

<u>Definition:</u> A set of vectors $E = \{v_1, \dots, v_n\}$ splits if there exists a non-trivial subset $S \subseteq E$ such that

$$\mathrm{span}(S) \cap \mathrm{span}(E \setminus S) = \{0\} \tag{2}$$

Fact: If (2) holds, and $\sum (E) = 0$, then $\sum (S) = \sum (E \setminus S) = 0$

Splitting

<u>Definition:</u> A set of vectors $E = \{v_1, ..., v_n\}$ splits if there exists a non-trivial subset $S \subseteq E$ such that

$$\mathrm{span}(S) \cap \mathrm{span}(E \setminus S) = \{0\} \tag{2}$$

Fact: If (2) holds, and $\sum (E) = 0$, then $\sum (S) = \sum (E \setminus S) = 0$

Proof: $\Sigma(E) = 0 \Rightarrow \Sigma(S) = -\Sigma(E \setminus S) \in \text{span}(S) \cap \text{span}(E \setminus S) = \{0\}$

E splits if there exists $S \subseteq E$ such that $\operatorname{span}(S) \cap \operatorname{span}(E \setminus S) = \{0\}$

Splitting theorem [Gubkin-L-Petrov]: Let $E = \{x_a \otimes y_a : a \in [n]\}$.

If

$$\dim \operatorname{span}(E) \leq d_x^{[n]} + d_y^{[n]} - 2$$

$$d_x^{[n]} = \dim \operatorname{span}\{x_1, \dots, x_n\}$$

then E splits.

$$d_x^{[n]} = \text{dimspan}\{x_1, \dots, x_n\}$$

E splits if there exists $S \subseteq E$ such that $span(S) \cap span(E \setminus S) = \{0\}$

Splitting theorem [Gubkin-L-Petrov]: Let $E = \{x_a \otimes y_a : a \in [n]\}$.

If

$$\dim \operatorname{span}(E) \le d_x^{[n]} + d_y^{[n]} - 2$$

$$d_x^{[n]} = \dim \operatorname{span}\{x_1, \dots, x_n\}$$

then E splits.

(Our generalization of Kruskal's theorem is a corollary to this)

E splits if there exists $S \subseteq E$ such that span $(S) \cap \text{span}(E \setminus S) = \{0\}$

Splitting theorem [Gubkin-L-Petrov]: Let $E = \{x_a \otimes y_a \otimes z_a : a \in [n]\}$.

If

dimspan
$$(E) \le d_x^{[n]} + d_y^{[n]} + d_z^{[n]} - 3$$
$$d_x^{[n]} = \text{dimspan}\{x_1, \dots, x_n\}$$

then E splits.

E splits if there exists $S \subseteq E$ such that $\operatorname{span}(S) \cap \operatorname{span}(E \setminus S) = \{0\}$

Splitting theorem [Gubkin-L-Petrov]: Let $E = \{x_a \otimes y_a \otimes z_a : a \in [n]\}$.

lf

dimspan
$$(E) \le d_x^{[n]} + d_y^{[n]} + d_z^{[n]} - 3$$

$$d_x^{[n]} = \text{dimspan}\{x_1, \dots, x_n\}$$

then *E* splits.

Corollary: If

$$n \le d_x^{[n]} + d_y^{[n]} + d_z^{[n]} - 2,$$

then *E* splits.

E splits if there exists $S \subseteq E$ such that $\operatorname{span}(S) \cap \operatorname{span}(E \setminus S) = \{0\}$

Splitting theorem [Gubkin-L-Petrov]: Let $E = \{x_a \otimes y_a \otimes z_a : a \in [n]\}$.

If

dimspan
$$(E) \le d_x^{[n]} + d_y^{[n]} + d_z^{[n]} - 3$$

$$d_x^{[n]} = \text{dimspan}\{x_1, \dots, x_n\}$$

then *E* splits.

Corollary: If

$$n \le d_x^{[n]} + d_y^{[n]} + d_z^{[n]} - 2,$$

then E splits.

Corollary: If $2n \le d_x^{[n]} + d_y^{[n]} + d_z^{[n]} - 2$, then for any other set of product tensors $E' = \{x'_a \otimes y'_a \otimes z'_a : a \in [n]\}$, $E \cup E'$ splits.

Corollary => Kruskal generalization

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in X \otimes Y \otimes Z \tag{1}$$

Suffices to prove:

Theorem [Gubkin-L-Petrov]: If

$$d_x^{[n]} = \text{dimspan}\{x_1, \dots, x_n\}$$

$$d_x^{[n]} = \text{dimspan}\{x_1, ..., x_n\}$$

$$2n \le d_x^{[n]} + d_y^{[n]} + d_z^{[n]} - 2,$$

then for any other decomposition

$$T = \sum_{a \in [n]} x'_a \otimes y'_a \otimes z'_a \in X \otimes Y \otimes Z$$

there exist non-trivial subsets
$$S, R \subseteq [n]$$
 such that $\sum_{a \in S} x_a \otimes y_a \otimes z_a = \sum_{a \in R} x_a' \otimes y_a' \otimes z_a'$

Corollary => Kruskal generalization

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in X \otimes Y \otimes Z \qquad (1)$$

Suffices to prove:

Theorem [Gubkin-L-Petrov]: If

$$d_x^{[n]} = \text{dimspan}\{x_1, \dots, x_n\}$$

If
$$d_x^{[n]} = \text{dimspan}\{x_1, ..., x_n\}$$

 $2n \le d_x^{[n]} + d_y^{[n]} + d_z^{[n]} - 2,$

then for any other decomposition

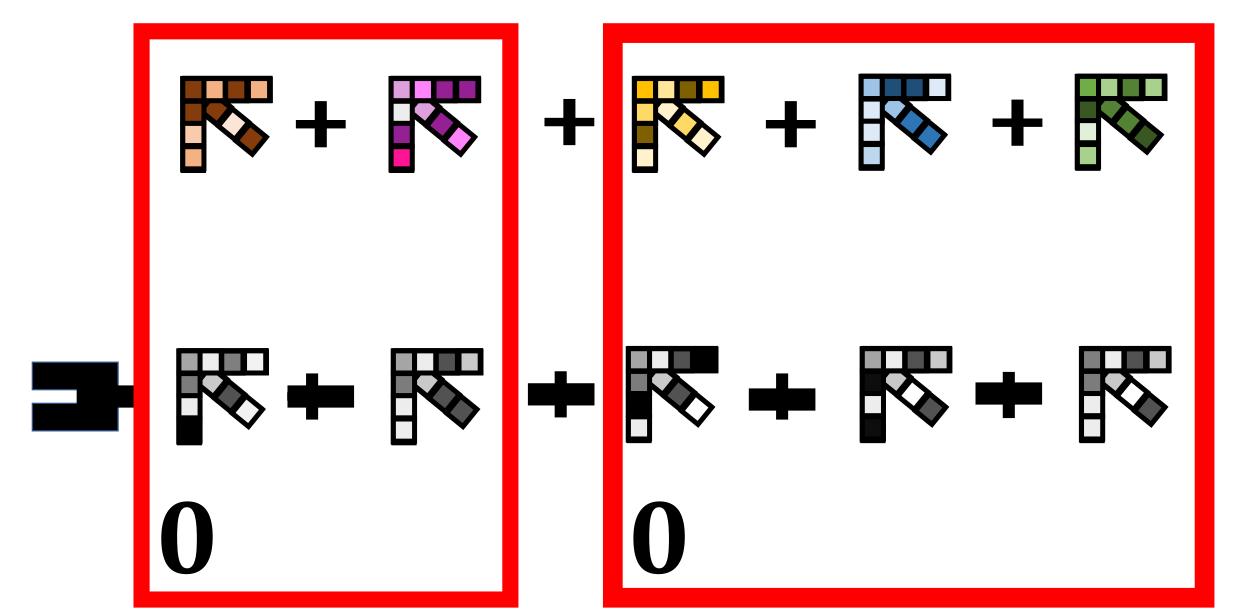
$$T = \sum_{a \in [n]} x'_a \otimes y'_a \otimes z'_a \in X \otimes Y \otimes Z$$

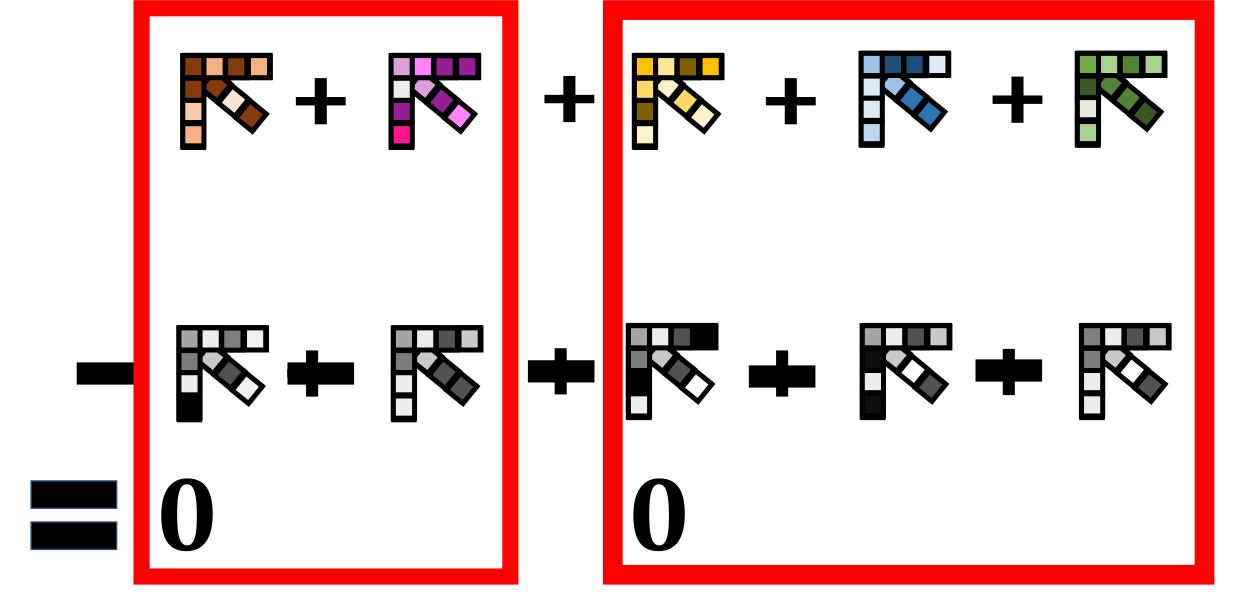
there exist non-trivial subsets $S, R \subseteq [n]$ such that $\sum x_a \otimes y_a \otimes z_a = \sum x'_a \otimes y'_a \otimes z'_a$

$$\sum_{a \in S} x_a \otimes y_a \otimes z_a = \sum_{a \in R} x'_a \otimes y'_a \otimes z'_a$$

Proof:

By previous corollary, $\{x_a \otimes y_a \otimes z_a, x_a' \otimes y_a' \otimes z_a' : a \in [n]\}$ splits





Conclusion

- Uniqueness of tensor decompositions
- Kruskal's theorem
- A generalization of Kruskal's theorem
- Splitting theorem
- More matroid theory for product tensors?

