A generalization of Kruskal’s theorem

What happens when you replace the Kruskal ranks with standard ranks in Kruskal’s theorem?
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What is a matrix?

Definition: Letn € Nand [n] := {1, ...,n}.

Let [F be a field, and let X, Y, Z be [F-vector spaces of dimension at least 2.
. 2 4
A matrix is a 2-way array [6 12]

Think of X @ Y as the set of dim(X) X dim(Y) matrices

Think of x @ y as the array xy! = (xin)(i i

We say thatT € X Q Y is product, or rank-one if T = x @ y forsomex € X,y €Y
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What is a mratrix tensor?

Definition: Letn € Nand [n] := {1, ...,n}.

Let [F be a field, and let X, Y, Z be [F-vector spaces of dimension at least 2.

1541181

A raatrix tensor is a 3-way array 20 24J

Thinkof X @ Y @ Z as the set of dim(X) X dim(Y) X dim(Z) tensors

Think of x @ y @ z as the array (xiyjzk)(ijk)

WesaythatT € X Q Y &Q Z is product, or rank-one if T = x @ y & z for some
xXEX,yeEY,Zz€Z
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What is a mratrix tensor?

Definition: Letn € Nand [n] := {1, ...,n}.

Let [F be a field, and let X, Y, Z be [F-vector spaces of dimension at least 2.

ForT € X QY @ Z, an expression T=Zxa®ya®zan®Y®Z

a€[n]

is called a decomposition of T into product tensors

rank(T): = min{ n: there exists a decomposition of T into n product tensors}



Uniqueness of tensor decompositions

Definition: Letn € Nand [n] := {1, ...,n}.

A tensor decomposition

T = Z X @Y, Rz, EXRY R Z

a€e[n]

is called the unique (rank) decomposition of T if rank(T)=n and for any other decomposition

T= ) x%®u®uLeXRY®Z

a€[n]
/
o(a)

there is a permutation o € S, such that x, ® y, @ zq = X5(q) ® V(o) ® Z
forall a € [n].






R+ + B[ +|8 | +ES
— R+ |+ 1S+ S



Applications

 Tensors <> Physical data
* Tensor decomposition <= Interpretation of data
 Unique decomposition<«=> Unique interpretation



Example: Latent parameter learning

w L is for latent
* Let A4, B, C, L be discrete random variables such that A, B, C are conditionally
independent, i.e.

Pr(a, b, c|l) = Pr(all) Pr(b|l) Pr(c|l) foralla,b,c,I.
* Goal: Given the probability vector Pr(4, B, C), determine Pr(4,B,C, L).
 Method:

Pr(4,B,C) = z Pr(1) Pr(4, B, C|I) = z Pr(D) Pr(4|l) ® Pr(B|l) ® Pr(C|l)
l [

.. If Pr(4, B, C) has a unique decomposition, then we can recover Pr(4, B, C, 1),

* Applications: Learning mixtures of spherical gaussians, phylogenetic tree
reconstruction, hidden Markov models, orbit retrieval, blind signal separation,
document topic models, ...
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Kruskal’s theorem =) %®%®ueX®YQZ ()

a€n]

General flavor of these results:

We are handed a decomposition (1), and we want to know if it

is the uniqgue decomposition of T.



Kruskal’s theorem =) %®u®ueXQY®Z (1

ag[n]

Notation: When S € [n], d3:= dimspan{x,:a € S}




Kruskal’s theorem =) %®u®ueXQY®Z (1

ag[n]

Notation: When S € [n], d3:= dimspan{x,:a € S}

d;: = dimspan{y,:a € S}



Kruskal’s theorem =) %®u®ueXQY®Z (1

ag[n]

Notation: When S € [n], d3:= dimspan{x,:a € S}

d;: = dimspan{y,:a € S}

d;:= dimspan{z,:a € S}



Kruskal’s theorem T=a;]xa®ya®zaEX®Y®z @)

Notation: When S € [n], d3:= dimspan{x,:a € S}

Example:

T=e24+e2*+eP3+eP2% +(e;4+6) @ (e, +63) Q (65 +ey)
x1 Q¥ K z4 X5 X Vs X Zs

ForS ={1,25}, dy=2,dy,=3, d;,=3
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Kruskal’s theorem T=a;]xa®ya®za6X®Y®z @)

Notation: When S € [n], d3:= dimspan{x,:a € S}

Example:

T=e234e2% 123412 +(e;4+6,) @ (e, +63)Q (65 +e,)
x1 Q¥ K z4 X5 X Vs X Zs

ForS ={1,25}, dy=2,dy=3, d,=3



Kruskal’s theorem T=a;]xa®ya®zaEX®Y®z @)

Notation: When S € [n], d3:= dimspan{x,:a € S}

Definition: The Kruskal rank of {x4, ..., x,,} € X is the largest integer k,

such that for every subset S € [n] of size |S| = k., it holds that

dy = |S].



Kruskal’s theorem T=a;]xa®ya®za6X®Y®z @)

Notation: When S € [n], d3:= dimspan{x,:a € S}

Definition: The Kruskal rank of {x4, ..., x,,} € X is the largest integer k,

such that for every subset S € [n] of size |S| = k., it holds that
dy = |S]|.

T=e2 4834+ 1234 (e;+6,)Q (e, +e3) @ (65 +e,)
x1 QY K z4 X5 X Vs X Zs

5
{x1, ..., x5} = {eq,e;5,€e3,€4,61 + €5}, k, =2, d,[c] = 4,



Kruskal’s theorem T=a;]Xa®ya®zaEX®Y®z @)

Notation: When S € [n], d3:= dimspan{x,:a € S}

Definition: The Kruskal rank of {x4, ..., x,,} € X is the largest integer k,

such that for every subset S € [n] of size |S| = k., it holds that
dy = |S]|.

Kruskal’s theorem: If 2n < k, + k), + k, — 2, then (1) is the unique

decomposition of T.
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T = Z 1, RV, Rz, EXQYRZ (1)

a€n]

Our generalization

Idea: Replace Kruskal ranks k, with standard dimspans dg[cn].

Theorem [Gubkin-L-Petrov]: If dg[cn] = dimspan{xy, ..., X,,}

4
2n < dM+dM + a2,

then for any other decomposition 1 = Z X Ve Rz, EXQRY R Z

a€[n]
there exist non-trivial subsets S,R S [n] such that

) % ®%®z2= ) % ®y 7z

aes aEeRr
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T = Z X, RV, Rz, EXQY®Z (1)

a€[n]

Our generalization

Idea: Replace Kruskal ranks k, with standard dimspans d;.

Theorem [Gubkin-L-Petrov]: If for every subset S € [n] of size |S| = 2,

it holds that

2|S| < dy +dy +d; — 2,
X

d; = dimspan{x,:a € S}

then (1) is the unique decomposition of T.






R+ |+ + 8+
= [+ R +ge + I+
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T = Z X, RV, Rz, EXQY®Z (1)

a€[n]

Our generalization

Idea: Replace Kruskal ranks k, with standard dimspans d;.

Theorem [Gubkin-L-Petrov]: If for every subset S € [n] of size |S| = 2,

it holds that

2|S| < dy +dy +d; — 2,
X

d; = dimspan{x,:a € S}

then (1) is the unique decomposition of T.



Example T=) %®%0®ueX@Y®z ()

ag[n]

T=e24+e2*+eP3+e2% +(e;4+6) @ (e +63) QD (e5 +ey)
x1 QY K z4 X5 X Vs X Zs



Example T=) %®%0®ueX@Y®z ()

a€n]

T=e234+e2%+eP3+el% +(e;4+6) Q (e, +e3) (65 +e,)
x1 QY K z4 Xs X Vs X Zs

Kruskal’'s theorem does not certify uniqueness

10=2nskke+k,+k,—2=2+2+2—-2=4



Example T=) %®%0®ueX@Y®z ()

a€[n]

T=e24+e2*+eP3+e2% +(e;4+6) @ (e +63) QD (e5 +ey)
x1 QY K z4 X5 X Vs X Zs

Theorem [Gubkin-L-Petrov]: If for every subset S € [n] of size |S| = 2, it holds that

2|1S| < dy + df; + d; — 2, then (1) is the unique decomposition of T.



For S = {1,2}, 4=2|S|<dy+dy+d; —2=2+2+2-2=4
For S = {1,2,5}, 6=2|S|<dy+dy+d; —2=2+3+3-2=6

ForS ={1,235}, 8=2|S|<dy+dy+d; —2=3+3+4-2=38

ForS=[5], 10=2|n]l<dM+dM+dM-2=4+4+4-2=10

T = Z X @V, Rz, EXRYRZ (1)

Example ya

T=e234+e2%+eP3+el% +(e;4+6) Q (e, +e3) (65 +e,)
x1 ®y1 Q2 X5 X Vs ® Zs

Theorem [Gubkin-L-Petrov]: If for every subset S € [n] of size |S| = 2, it holds that

2|1S| < dy + df; + d; — 2, then (1) is the unique decomposition of T.

CLO KX
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Splitting

Definition: A set of vectors E = {v,, ..., 1,,} splits if there exists a non-trivial

subset S € E such that

span(S) N span(E \ S) = {0} (2)



E splits if there exists S € E such that
span(S) N span(E \ S) = {0}




E splits if there exists S € E such that

E = {31, €r, €1 +62, €3, €4, €3 +€4} Span(S) N Span(E \ S) = {0}

span(E)

span{eq, €5, e; +€,} span{es, e, e3+e,}



E splits if there exists S € E such that
E ={eq, ez, e1+ey, €3, €4, e3t+e4} U { }span(S) Nspan(E \ §) = {0;

span(E)

span{ey, e, e1 +ey, } es span{es, ey, e3+ey}



E splits if there exists S € E such that
E ={eq, ez, e1+ey, €3, €4, e3t+e4} U { }span(S) Nspan(E \ §) = {0;

span(E)

span{eq, e;, e; +e,}  eq span{es, ey, e3+ey, }



Splitting

Definition: A set of vectors E = {v,, ..., 1,,} splits if there exists a non-trivial

subset S € E such that

span(S) N span(E \ S) = {0} (2)

Fact: If (2) holds, and Y(E) = 0, then (S) = (E\ S) = 0



Splitting

Definition: A set of vectors E = {v,, ..., 1,,} splits if there exists a non-trivial

subset S € E such that

span(S) N span(E \ S) = {0} (2)

Fact: If (2) holds, and Y(E) = 0, then (S) = (E\ S) = 0

Proof: Y(E)=0=)(S)=—-X2(E\S) €span(S) nspan(E \ S) = {0}



E splits if there exists S € E such that

Splitting theorem span(S) n span(E \ §) = (0}

Splitting theorem [Gubkin-L-Petrov]: Let E = {x, & y,:a € [n]}.

If
dimspan(F) < d,[cn] + dj[,n] — 2

\

then E splits. dp[cn] = dimspan{xq, ..., x,}



S E splits if there exists S € E such that
Splitting theorem span(S) n span(E \ §) = (0}

Splitting theorem [Gubkin-L-Petrov]: Let E = {x, & y,:a € [n]}.

If
dimspan(E) < d™ + d3[,n] — 2
| \
then E splits. d™ = dimspanfx,, ..., )}

(Our generalization of Kruskal’s theorem is a corollary to this)



E splits if there exists S € E such that

Splitting theorem span(S) n span(E \ §) = (0}

Splitting theorem [Gubkin-L-Petrov]: Let £ = {x, & y, & z,:a € [n]}.

If
dimspan(E) < d,[cn] + d3[,n] + dE"] -3

\

then E splits. d}[(n] = dimspan{xq, ..., x,}



S E splits if there exists S € E such that
Splitting theorem span(S) n span(E \ §) = (0}

Splitting theorem [Gubkin-L-Petrov]: Let £ = {x, & y, & z,:a € [n]}.

If
dimspan(E) < d,[cn] + d3[,n] + dgn] -3
| \
then E splits. dj[cn] = dimspan{x;, ..., X, }

Corollary: If

n<dy +dM+at -2,
then E splits.



E splits if there exists S € E such that

Splitting theorem span(S) n span(E \ §) = (0}

Splitting theorem [Gubkin-L-Petrov]: Let £ = {x, & y, & z,:a € [n]}.

If
dimspan(E) < d,[cn] + d3[,n] T dgn] -3
| \
then E splits. d)[(n] = dimspan{x;, ..., X, }

Corollary: If

n<dy +dM+at -2,

then E splits.
Corollary: If 2n < dy[cn] + dj[,n] + dL"] — 2, then for any other set of product

tensors E' = {x, @ v, Q z;:a € |n]}, E U E' splits.



T = Z X @Y, D2, EXQYR®Z (1)

a€n]

Corollary => Kruskal generalization

Suffices to prove:

Theorem [Gubkin-L-Petrov]: If dg[cn] = dimspan{xy, ..., X,,}

2n < d{+ d + a2

then for any other decomposition r= z Xa Q@ Va2, €EXQYQZ

a€[n]

there exist non-trivial subsets S,R € [n] such that z Xg Ry, Q z, = 2 xh Q@ vl Q z,

aes aEeRr




T = Z X, RV, Rz, EXQY®Z (1)

a€n]

Corollary => Kruskal generalization

Suffices to prove:

Theorem [Gubkin-L-Petrov]: If d,[cn] = dimspan{xy, ..., X,,}

2n<d +d) +d)t -2,

then for any other decomposition r= z Xa Q@ Va2, €EXQYQZ

a€[n]

there exist non-trivial subsets S,R € [n] such that z Xg Ry, Q z, = 2 xh Q@ vl Q z,

aes aEeRr

Proof:

By previous corollary, {x, @ v, & z,, x;, ® v, Q z, :a € [n]} splits









Conclusion

* Unigueness of tensor decompositions

* Kruskal’s theorem

* A generalization of Kruskal’s theorem

* Splitting theorem

* More matroid theory for product tensors?
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