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𝑋!"#

𝑈

Product pure states:   𝑋!"# = { 𝜓 ⊗ 𝜙 : 𝜓 , 𝜙 ∈ ℂ$} ⊆ ℂ$ ⊗ℂ$

Problem: Given a basis for a linear subspace 𝑈 ⊆ ℂ$ ⊗ℂ$ ,
determine if 𝑈 is entangled, i.e. if 𝑈 ∩ 𝑋!"# = {0}.

Applications:

• Range criterion: For a density operator 
𝜌 ∈ 𝐷 ℂ!⊗ℂ! ,

Im(𝜌) entangled  ⇒ 𝜌 entangled

• Entangled subspaces can be used to 
construct entanglement witnesses and 
quantum error-correcting codes



𝑋!"#

𝑈

Product pure states:   𝑋!"# = { 𝜓 ⊗ 𝜙 : 𝜓 , 𝜙 ∈ ℂ$} ⊆ ℂ$ ⊗ℂ$

Problem: Given a basis for a linear subspace 𝑈 ⊆ ℂ$ ⊗ℂ$ ,
determine if 𝑈 is entangled, i.e. if 𝑈 ∩ 𝑋!"# = {0}.

Outline:

• Algorithm
• Complete hierarchy
• Extension to other notions of entanglement
• Robust generalization of hierarchy
• Extending symmetric extensions [DPS 04] to other 

notions of separability



Product pure states: 𝑋!"# = { 𝜓 ⊗ 𝜙 : 𝜓 , 𝜙 ∈ ℂ$} ⊆ ℂ$ ⊗ℂ$

Problem: Given a basis for a linear subspace 𝑈 ⊆ ℂ$ ⊗ℂ$ ,
determine if 𝑈 is entangled, i.e. if 𝑈 ∩ 𝑋!"# = {0}.

[Buss et al 1999]: This is NP-Hard in the worst case.

[Barak et al 2019]: Best known algorithm takes 2 "# ! time.

[Classical AG, Parthasarathy 01]: dim 𝑈 > 𝑑 − 1 $ ⇒ 𝑈 is not entangled

𝑈 generic   and      dim 𝑈 ≤ 𝑑 − 1 $ ⇒ 𝑈 is entangled

Algorithm [JLV 22]: Takes poly(𝑑)-time and outputs either:
1. Fail, or
2. A certificate that 𝑈 is entangled

Works-Extremely-Well Theorem [JLV 22]:
𝑈 generic   and     dim 𝑈 ≤ %

&
𝑑 − 1 $⇒ Algorithm outputs a certificate that 𝑈 is entangled

“Hay in a haystack problem”



Product pure states: 𝑋!"# = { 𝜓 ⊗ 𝜙 : 𝜓 , 𝜙 ∈ ℂ$} ⊆ ℂ$ ⊗ℂ$

Problem: Given a basis for a linear subspace 𝑈 ⊆ ℂ$ ⊗ℂ$ ,
determine if 𝑈 is entangled, i.e. if 𝑈 ∩ 𝑋!"# = {0}.

[Buss et al 1999]: This is NP-Hard in the worst case.

[Barak et al 2019]: Best known algorithm takes 2 "# ! time.

[Classical AG, Parthasarathy 01]: dim 𝑈 > 𝑑 − 1 $ ⇒ 𝑈 is not entangled

𝑈 generic   and      dim 𝑈 ≤ 𝑑 − 1 $ ⇒ 𝑈 is entangled

Algorithm [JLV 22]: Takes poly(𝑑)-time and outputs either:
1. Fail, or
2. A certificate that 𝑈 is entangled, or
3. A separable state 𝝍 ⊗ 𝝓 ∈ 𝑼.

Works-Extremely-Well Theorem [JLV 22]:
𝑈 generic   and     dim 𝑈 ≤ %

&
𝑑 − 1 $⇒ Algorithm outputs a certificate that 𝑈 is entangled

[JLV 22]: WEW Theorem when 𝑈 contains a 
generic planted separable state

“Hay in a haystack problem”



Product pure states: 𝑋!"# = { 𝜓 ⊗ 𝜙 : 𝜓 , 𝜙 ∈ ℂ$} ⊆ ℂ$ ⊗ℂ$

Problem: Given a basis for a linear subspace 𝑈 ⊆ ℂ$ ⊗ℂ$ ,
determine if 𝑈 is entangled, i.e. if 𝑈 ∩ 𝑋!"# = {0}.

[Buss et al 1999]: This is NP-Hard in the worst case.

[Barak et al 2019]: Best known algorithm takes 2 "# ! time.

[Classical AG, Parthasarathy 01]: dim 𝑈 > 𝑑 − 1 $ ⇒ 𝑈 is not entangled

𝑈 generic   and      dim 𝑈 ≤ 𝑑 − 1 $ ⇒ 𝑈 is entangled

Algorithm [JLV 22]: Takes poly(𝑑)-time and outputs either:
1. Fail, or
2. A certificate that 𝑈 is entangled, or
3. A separable state 𝝍 ⊗ 𝝓 ∈ 𝑼.

Works-Extremely-Well Theorem [JLV 22]:
𝑈 generic   and     dim 𝑈 ≤ %

&
𝑑 − 1 $⇒ Algorithm outputs a certificate that 𝑈 is entangled

[JLV 22]: WEW Theorem when 𝑈 contains a 
generic planted separable state

This talk: Focus on certification part of algorithm

“Hay in a haystack problem”



The Algorithm



Product pure states:   𝑋!"# = { 𝜓 ⊗ 𝜙 : 𝜓 , 𝜙 ∈ ℂ$} ⊆ ℂ$ ⊗ℂ$

Problem: Given a basis for a linear subspace 𝑈 ⊆ ℂ$ ⊗ℂ$ ,
determine if 𝑈 is entangled, i.e. if 𝑈 ∩ 𝑋!"# = {0}.

Idea: Problem is difficult because it’s non-linear
(𝑋!"# ⊆ ℂ$ ⊗ℂ$ isn’t a linear subspace).

Make it linear: Instead check if 𝑈 ∩ Span 𝑋!"# = {0}.
Doesn’t work: Span 𝑋!"# = ℂ$ ⊗ℂ$ .

Lift it up: Let  𝑋!"#% = Span{ 𝜓 ⊗ 𝜙 ⊗%: 𝜓 , 𝜙 ∈ ℂ$} = 𝑆% ℂ$ ⊗𝑆% ℂ$

Check if  𝑈⊗% ∩ 𝑋!"#% = {0}. Works extremely well!



Product pure states: 𝑋!"# = { 𝜓 ⊗ 𝜙 : 𝜓 , 𝜙 ∈ ℂ$} ⊆ ℂ$ ⊗ℂ$

Problem: Given a basis for a linear subspace 𝑈 ⊆ ℂ$ ⊗ℂ$ ,
determine if 𝑈 is entangled, i.e. if 𝑈 ∩ 𝑋!"# = {0}.

Let  𝑋'()$ = Span{ 𝜓 ⊗ 𝜙 ⊗$: 𝜓 , 𝜙 ∈ ℂ!} = 𝑆$ ℂ! ⊗𝑆$ ℂ!

Algorithm: 
If 𝑈⊗& ∩ 𝑋!"#& = {0}, output 𝑈 is entangled
Otherwise, output Fail

Correctness: 𝜓 ⊗ 𝜙 ∈ 𝑈 ⇒ 𝜓 ⊗ 𝜙 ⊗& ∈ 𝑈⊗& ∩ 𝑋!"#&

⇒ Algorithm outputs Fail.

Takes poly(𝑑) time to check



Algorithm runtime to certify 𝑈 ∩ 𝑋234 = {0}

Table 1 provides some numerics that show the maximum dimension of an r-entangled sub-
space that can be certified by Theorem 2 (which, in all cases displayed, is equal to the largest value
of dS for which Inequality (8) holds) in various local dimensions, as well as the amount of time
that it takes our code to certify such a subspace on a standard desktop computer. The subspaces
that we checked to obtain these timings have a form that is similar to that of the subspace from
Example 4.

r = 1 r = 2

dA = dB max. dS time max. dS time

3 3 0.01 s 1 0.03 s
4 8 0.03 s 3 0.19 s
5 13 0.08 s 7 0.65 s
6 20 0.20 s 12 2.38 s
7 29 0.49 s 18 8.17 s
8 39 1.06 s 25 27.46 s
9 50 2.24 s 33 1.78 min
10 63 5.56 s 43 14.62 min

Table 1: The maximum dimension dS of a subspace of HA ⌦ HB that can be certified to be r-
entangled by the first level of the hierarchy (i.e., Theorem 2), as well as the time required to do the
certification, for small values of dA = dB and r. In all cases shown here, the maximum dimension
is the largest dS for which Inequality (8) holds.

2.2 The Rest of the Hierarchy

For an integer k � 1, the k-th level of the hierarchy is based on the following linear map acting on
(HA ⌦HB)⌦(r+k):

Fk
r ,

�
P^

A,r+1 ⌦ P^

B,r+1 ⌦ IAB,k�1
�

P_

AB,r+k, (9)

where IAB,k�1 is the identity on (HA ⌦ HB)⌦(k�1) and P_

AB,r+k is the projection onto the
(dAdB+r+k�1

r+k )-dimensional symmetric subspace of (HA ⌦ HB)⌦(r+k) (i.e., the symmetrization is
performed between the r + k copies of HA ⌦HB, but not between HA and HB).

In the k = 1 case, Fk
r is exactly the same as the linear map F1

r from Equation (1), which can
be seen by noting that range(P^

A,r+1 ⌦ P^

B,r+1) ✓ range(P_

AB,r+1). Theorem 2 still works if F1
r is re-

placed by Fk
r , but we now furthermore get a converse that completely characterizes all r-entangled

subspaces:

Theorem 6. Let S ✓ HA ⌦HB be a subspace with basis {|x1i, . . . , |xdS i}. Then S is r-entangled if and
only if there exists an integer 1  k  (max{r, 2}+ 1)dAdB � r such that the set

n
Fk

r
�
|xj1 i ⌦ · · ·⌦ |xjr+k i

�
: 1  j1  · · ·  jr+k  dS

o
(10)

is linearly independent. Furthermore, if a subspace S is certified to be r-entangled at the k-th level of the hi-
erarchy (i.e., if the set (10) is linearly independent), then a generic dS-dimensional subspace will be certified
at the k-th level.

7

𝑑 dim 𝑈 time



From algorithm
to complete hierarchy

(based on Hilbert’s Nullstellensatz)



Product pure states:   𝑋!"# = { 𝜓 ⊗ 𝜙 : 𝜓 , 𝜙 ∈ ℂ$} ⊆ ℂ$ ⊗ℂ$

Problem: Given a basis for a linear subspace 𝑈 ⊆ ℂ$ ⊗ℂ$ ,
determine if 𝑈 is entangled, i.e. if 𝑈 ∩ 𝑋!"# = {0}.

Let  𝑋'()+ = Span{ 𝜓 ⊗ 𝜙 ⊗+: 𝜓 , 𝜙 ∈ ℂ!} = 𝑆+ ℂ! ⊗𝑆+ ℂ!

Algorithm 𝑘:
If 𝑈⊗' ∩ 𝑋!"#' = {0}, output 𝑈 is entangled
Otherwise, output Fail

Completeness [Hilbert]: For 𝑘 = 3$!,     Fail     ⇔ 𝑈 not entangled



Analogous hierarchies
for other notions of entanglement



Let 𝑋 ⊆ ℂ( be nice* (for example,  𝑋 = 𝑋!"# ⊆ ℂ$ ⊗ℂ$)

Problem: Given a basis for a linear subspace 𝑈 ⊆ ℂ( ,
determine if 𝑈 avoids 𝑋, i.e. if 𝑈 ∩ 𝑋 = {0}.

*Any conic varietyThink: “Some set of low entanglement”

𝑋

𝑈



Let 𝑋 ⊆ ℂ( be nice* (for example,  𝑋 = 𝑋!"# ⊆ ℂ$ ⊗ℂ$)

Problem: Given a basis for a linear subspace 𝑈 ⊆ ℂ( ,
determine if 𝑈 avoids 𝑋, i.e. if 𝑈 ∩ 𝑋 = {0}.

Let  𝑋' = Span{|𝜓⟩⊗': 𝜓 ∈ 𝑋}

Algorithm 𝑘:
If 𝑈⊗' ∩ 𝑋' = {0}, output 𝑈 avoids 𝑋
Otherwise, output Fail

Completeness [Hilbert]: For 𝑘 = 2) ( ,     Fail     ⇔ 𝑈 intersects   𝑋

*Any conic variety

Takes 𝐷# + time to check

Think: “Some set of low entanglement”

𝑋

𝑈



Examples
Schmidt rank ≤ 𝒓 states
𝑋, = {|𝜓⟩ ∈ ℂ!⊗ℂ!: Schmidt−rank 𝜓 ≤ 𝑟}

Product states

𝑋'() = { 𝜓% ⊗⋯⊗ 𝜓- : |𝜓.⟩ ∈ ℂ!}

Biseparable states 

𝑋/ = {|𝜓⟩ ∈ ℂ! ⊗-
: Some bipartition of |𝜓⟩ has rank 1}

Slice rank 1 states
𝑋0 = {|𝜓⟩ ∈ ℂ1 ⊗-: Some 1 v.s. rest bipartition of |𝜓⟩ has rank 1}

Matrix product states of bond dimension ≤ 𝒓
𝑋0 = {|𝜓⟩ ∈ ℂ1 ⊗-: Every left-right bipartition has rank ≤ 𝑟}

= Ω, 𝑑$
= 𝑟 + 1

~(1/4)𝑑-
= 2

~(1/4)𝑑-
= 2

~ 1/4 𝑑-
= 2

= Ω, 𝑑-
= 𝑟 + 1

WEW Theorem [JLV 22]: For generic 𝑈 of dimension dim 𝑈 ≤
it holds that 𝑈⊗' ∩ 𝑋' = {0} for 𝑘 =

in-𝑋!-arable ↔ Genuinely entangled

in-𝑋"#$-arable ↔ Completely entangled



Examples
Schmidt rank ≤ 𝒓 states
𝑋, = {|𝜓⟩ ∈ ℂ!⊗ℂ!: Schmidt−rank 𝜓 ≤ 𝑟}

Product states

𝑋'() = { 𝜓% ⊗⋯⊗ 𝜓- : |𝜓.⟩ ∈ ℂ!}

Biseparable states 

𝑋/ = {|𝜓⟩ ∈ ℂ! ⊗-
: Some bipartition of |𝜓⟩ has rank 1}

Slice rank 1 states
𝑋0 = {|𝜓⟩ ∈ ℂ1 ⊗-: Some 1 v.s. rest bipartition of |𝜓⟩ has rank 1}

Matrix product states of bond dimension ≤ 𝒓
𝑋0 = {|𝜓⟩ ∈ ℂ1 ⊗-: Every left-right bipartition has rank ≤ 𝑟}

= Ω, 𝑑$
= 𝑟 + 1

~(1/4)𝑑-
= 2

~(1/4)𝑑-
= 2

~ 1/4 𝑑-
= 2

= Ω, 𝑑-
= 𝑟 + 1

WEW Theorem [JLV 22]: For generic 𝑈 of dimension dim 𝑈 ≤
it holds that 𝑈⊗' ∩ 𝑋' = {0} for 𝑘 =

in-𝑋!-arable ↔ Genuinely entangled

in-𝑋"#$-arable ↔ Completely entangled

Takeaway: Algorithm certifies entanglement of subspaces 
of dimension a constant multiple of the maximum possible 
in polynomial time.



Robust generalization 
of the hierarchy



Robust generalization:
Instead of determining whether 𝑈 avoids 𝑋,
Compute ℎ* 𝑈 ≔ max

+ ∈*
𝜓 𝑃- 𝜓

𝑃4 = Proj(𝑈)
𝑈 avoids 𝑋 ⟺ ℎ5 𝑈 < 1



Theorem/Robust Hierarchy [JLV 23+]:
Let 𝑋 ⊆ ℂ( be nice*,     𝑈 ⊆ ℂ( linear,   and    𝑃) = Proj(𝑈).

For each 𝑘, let 𝜇' = 𝜆*+, 𝑃-' 𝑃) ⊗ 𝐼⊗'./ 𝑃-' . 

Then the 𝜇" form a non-increasing sequence converging to ℎ# 𝑈 ≔ max
$ ∈#

𝜓|𝑃&|𝜓 .

*Any conic variety
𝑃5+ = Proj(𝑋+)

Robust generalization:
Instead of determining whether 𝑈 avoids 𝑋,
Compute ℎ* 𝑈 ≔ max

+ ∈*
𝜓 𝑃- 𝜓

𝑃4 = Proj(𝑈)
𝑈 avoids 𝑋 ⟺ ℎ5 𝑈 < 1



Theorem/Robust Hierarchy [JLV 23+]:
Let 𝑋 ⊆ ℂ( be nice*,    𝑊 ∈ Herm ℂ( Hermitian.

For each 𝑘, let 𝜇' = 𝜆*+, 𝑃-' 𝑊⊗ 𝐼⊗'./ 𝑃-' . 

Then the 𝜇" form a non-increasing sequence converging to ℎ# 𝑊 ≔ max
$ ∈#

𝜓|𝑊|𝜓 .

Theorem/Robust Hierarchy not only holds for 𝑃&, but for any Hermitian 𝑊!

*Any conic variety
𝑃5+ = Proj(𝑋+)

Robust generalization:
Instead of determining whether 𝑈 avoids 𝑋,
Compute ℎ* 𝑈 ≔ max

+ ∈*
𝜓 𝑃- 𝜓

𝑃4 = Proj(𝑈)
𝑈 avoids 𝑋 ⟺ ℎ5 𝑈 < 1



Extending symmetric 
extensions to other notions 

of separability



Theorem/Robust Hierarchy [JLV 23+]:
Let 𝑋 ⊆ ℂ( be nice*,    𝑊 ∈ Herm ℂ( Hermitian.

For each 𝑘, let 𝜇' = 𝜆*+, 𝑃-' 𝑊⊗ 𝐼⊗'./ 𝑃-' . 

Then the 𝜇" form a non-increasing sequence converging to ℎ# 𝑊 ≔ max
$ ∈#

𝜓|𝑊|𝜓 .

Definition: A density operator 𝜌 ∈ D(ℂ() is 𝑋-arable if there exist
𝜓/ , … , 𝜓ℓ ∈ 𝑋 such that 𝜌 = ∑12/ℓ 𝑝1 𝜓1 ⟨𝜓1|.

Example: 𝜌 ∈ D(ℂ$ ⊗ℂ$) is 𝑋!"#-arable ⟺𝜌 is separable.

*Any conic variety
𝑃5+ = Proj(𝑋+)



Theorem/Robust Hierarchy [JLV 23+]:
Let 𝑋 ⊆ ℂ( be nice*,    𝑊 ∈ Herm ℂ( Hermitian.

For each 𝑘, let 𝜇' = 𝜆*+, 𝑃-' 𝑊⊗ 𝐼⊗'./ 𝑃-' . 

Then the 𝜇" form a non-increasing sequence converging to ℎ# 𝑊 ≔ max
$ ∈#

𝜓|𝑊|𝜓 .

Definition: A density operator 𝜌 ∈ D(ℂ() is 𝑋-arable if there exist
𝜓/ , … , 𝜓ℓ ∈ 𝑋 such that 𝜌 = ∑12/ℓ 𝑝1 𝜓1 ⟨𝜓1|.

Corollary [JLV 23+]: 𝜌 is 𝑋-arable  ⟺ for all 𝑘 there exists 𝜎 ∈ D ℂ( ⊗'

such that     Tr%,4,…,6 𝜎 = 𝜌 and     Im 𝜎 ⊆ 𝑋' = Span{|𝜓⟩⊗': 𝜓 ∈ 𝑋}

Example (Symmetric extensions) [DPS 04]: 𝜌 is separable ⟺ For all 𝑘 there exists 
an extension 𝜎 of 𝜌 such that  Im 𝜎 ⊆ 𝑋!"#' = 𝑆' ℂ$ ⊗𝑆' ℂ$

*Any conic variety
𝑃5+ = Proj(𝑋+)

“𝜎 is an extension of 𝜌”

Symmetric



Theorem/Robust Hierarchy [JLV 23+]:
Let 𝑋 ⊆ ℂ( be nice*,    𝑊 ∈ Herm ℂ( Hermitian.

For each 𝑘, let 𝜇' = 𝜆*+, 𝑃-' 𝑊⊗ 𝐼⊗'./ 𝑃-' . 

Then the 𝜇" form a non-increasing sequence converging to ℎ# 𝑊 ≔ max
$ ∈#

𝜓|𝑊|𝜓 .

Definition: A density operator 𝜌 ∈ D(ℂ() is 𝑋-arable if there exist
𝜓/ , … , 𝜓ℓ ∈ 𝑋 such that 𝜌 = ∑12/ℓ 𝑝1 𝜓1 ⟨𝜓1|.

Corollary [JLV 23+]: 𝜌 is 𝑋-arable  ⟺ for all 𝑘 there exists 𝜎 ∈ D ℂ( ⊗'

such that     Tr%,4,…,6 𝜎 = 𝜌 and     Im 𝜎 ⊆ 𝑋' = Span{|𝜓⟩⊗': 𝜓 ∈ 𝑋}

Proof uses robust hierarchy and the Hyperplane separation theorem:
𝜌 is 𝑋-arable            ⟺ Tr 𝜌𝑊 ≤ 0 for all 𝑊 such that ℎ5 𝑊 ≤ 0

*Any conic variety
𝑃5+ = Proj(𝑋+)

“𝜎 is an extension of 𝜌”
“in-𝑋-arability witness”



Examples
Schmidt rank ≤ 𝒓 states [TMG 15]
𝑋, = {|𝜓⟩ ∈ ℂ!⊗ℂ!: SR 𝜓 ≤ 𝑟}

Product states [DPS 04]

𝑋'() = { 𝜓% ⊗⋯⊗ 𝜓- : |𝜓.⟩ ∈ ℂ!}

Biseparable states 

𝑋/ = {|𝜓⟩ ∈ ℂ! ⊗-
: SR(|𝜓⟩)=1 in some cut}

Slice rank 1 states
𝑋0 = {|𝜓⟩ ∈ ℂ1 ⊗-: SR(|𝜓⟩)=1 in some 1 vs. rest}

MPS of bond dimension ≤ 𝒓
𝑋67', , = {|𝜓⟩ ∈ ℂ1 ⊗-: Every L-R cut has SR ≤ 𝑟}

Theorem [JLV 23+]: 𝜌 𝑋-arable  ⟺ ∀𝑘 ∃ extension 𝜎 of 𝜌 s.t.
Im 𝜎 ⊆ 𝑋+ = Span{|𝜓⟩⊗+: 𝜓 ∈ 𝑋}

𝜌 𝑋,-able  ⟺ ∀𝑘 ∃ extension 𝜎 of 𝜌 s.t.

Im 𝜎 ⊆ 𝑆! ℂ"⊗ℂ" ∩ ∧#$% ℂ" ⊗' (
⊗ ℂ"⊗ℂ" ⊗!)#)%

𝜌 separable             ⟺ ∀𝑘 ∃ extension 𝜎 of 𝜌 s.t.
Im 𝜎 ⊆ 𝑆+ ℂ! ⊗⋯⊗𝑆+ ℂ!

𝜌 biseparable ⟺ ∀𝑘 ∃ extension 𝜎 of 𝜌 s.t

Im 𝜎 ⊆ ∑*⊆ , 𝑆! ℂ"
⊗*

⊗𝑆! ℂ"
⊗ , )*

𝜌 𝑋0-arable  ⟺ ∀𝑘 ∃ extension 𝜎 of 𝜌 s.t
Im 𝜎 ⊆ ∑-.%, 𝑆! ℂ" ⊗𝑆! ℂ" ⊗,)%

𝜌 𝑋67', ,-arable  ⟺ ∀𝑘 ∃ extension 𝜎 of 𝜌 s.t
…



Examples
Schmidt rank ≤ 𝒓 states [TMG 15]
𝑋, = {|𝜓⟩ ∈ ℂ!⊗ℂ!: SR 𝜓 ≤ 𝑟}

Product states [DPS 04]

𝑋'() = { 𝜓% ⊗⋯⊗ 𝜓- : |𝜓.⟩ ∈ ℂ!}

Biseparable states 

𝑋/ = {|𝜓⟩ ∈ ℂ! ⊗-
: SR(|𝜓⟩)=1 in some cut}

Slice rank 1 states
𝑋0 = {|𝜓⟩ ∈ ℂ1 ⊗-: SR(|𝜓⟩)=1 in some 1 vs. rest}

MPS of bond dimension ≤ 𝒓
𝑋67', , = {|𝜓⟩ ∈ ℂ1 ⊗-: Every L-R cut has SR ≤ 𝑟}

Theorem [JLV 23+]: 𝜌 𝑋-arable  ⟺ ∀𝑘 ∃ extension 𝜎 of 𝜌 s.t.
Im 𝜎 ⊆ 𝑋+ = Span{|𝜓⟩⊗+: 𝜓 ∈ 𝑋}

𝜌 𝑋,-able  ⟺ ∀𝑘 ∃ extension 𝜎 of 𝜌 s.t.

Im 𝜎 ⊆ 𝑆! ℂ"⊗ℂ" ∩ ∧#$% ℂ" ⊗' (
⊗ ℂ"⊗ℂ" ⊗!)#)%

𝜌 separable             ⟺ ∀𝑘 ∃ extension 𝜎 of 𝜌 s.t.
Im 𝜎 ⊆ 𝑆+ ℂ! ⊗⋯⊗𝑆+ ℂ!

𝜌 biseparable ⟺ ∀𝑘 ∃ extension 𝜎 of 𝜌 s.t

Im 𝜎 ⊆ ∑*⊆ , 𝑆! ℂ"
⊗*

⊗𝑆! ℂ"
⊗ , )*

𝜌 𝑋0-arable  ⟺ ∀𝑘 ∃ extension 𝜎 of 𝜌 s.t
Im 𝜎 ⊆ ∑-.%, 𝑆! ℂ" ⊗𝑆! ℂ" ⊗,)%

𝜌 𝑋67', ,-arable  ⟺ ∀𝑘 ∃ extension 𝜎 of 𝜌 s.t
…

Takeaway:
Symmetric extensions hierarchy for separability

extended to…
Linearly constrained extensions hierarchy for 𝑋-arability 



Conclusion

1. Complete hierarchies of linear systems to certify entanglement of a 
subspace. These work extremely well already at early levels.

Title: Complete hierarchy of linear systems for certifying quantum entanglement of subspaces

2. (Briefly mentioned) poly-time algorithms to find low-entanglement elements 
of a subspace. These also work extremely well.

Title: Computing linear sections of varieties: quantum entanglement, tensor decompositions and beyond

3. Extending symmetric extensions: Separability testing hierarchy of [DPS 04] 
extended to hierarchies for Schmidt number, biseparability, and 𝑋-arability.  

Title: TBD
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