A complete hierarchy of linear systems for certifying quantum entanglement of subspaces

Nathaniel Johnston ${ }^{1}$ Benjamin Lovitz ${ }^{2}$ Aravindan Vijayaraghavan ${ }^{3}$

1. Mount Allison University
2. NSF Postdoc, Northeastern University
3. Northwestern University

QIP 2023
February 6, 2023

Northeastern
University

Product pure states: $X_{\text {Sep }}=\left\{|\psi\rangle \otimes|\phi\rangle:|\psi\rangle,|\phi\rangle \in \mathbb{C}^{d}\right\} \subseteq \mathbb{C}^{d} \otimes \mathbb{C}^{d}$

Problem: Given a basis for a linear subspace $U \subseteq \mathbb{C}^{d} \otimes \mathbb{C}^{d}$, determine if U is entangled, i.e. if $U \cap X_{\text {Sep }}=\{0\}$.

Applications:

- Range criterion: For a density operator $\rho \in D\left(\mathbb{C}^{d} \otimes \mathbb{C}^{d}\right)$, $\operatorname{Im}(\rho)$ entangled $\Rightarrow \rho$ entangled
- Entangled subspaces can be used to construct entanglement witnesses and quantum error-correcting codes

Product pure states: $X_{\text {Sep }}=\left\{|\psi\rangle \otimes|\phi\rangle:|\psi\rangle,|\phi\rangle \in \mathbb{C}^{d}\right\} \subseteq \mathbb{C}^{d} \otimes \mathbb{C}^{d}$

Problem: Given a basis for a linear subspace $U \subseteq \mathbb{C}^{d} \otimes \mathbb{C}^{d}$, determine if U is entangled, i.e. if $U \cap X_{\text {Sep }}=\{0\}$.

Outline:

- Algorithm
- Complete hierarchy
- Extension to other notions of entanglement
- Robust generalization of hierarchy
- Extending symmetric extensions [DPS 04] to other notions of separability

Product pure states: $X_{\text {Sep }}=\left\{|\psi\rangle \otimes|\phi\rangle:|\psi\rangle,|\phi\rangle \in \mathbb{C}^{d}\right\} \subseteq \mathbb{C}^{d} \otimes \mathbb{C}^{d}$
Problem: Given a basis for a linear subspace $U \subseteq \mathbb{C}^{d} \otimes \mathbb{C}^{d}$, determine if U is entangled, i.e. if $U \cap X_{\text {Sep }}=\{0\}$.
[Buss et al 1999]: This is NP-Hard in the worst case.
[Barak et al 2019]: Best known algorithm takes $2^{\tilde{O}(\sqrt{d})}$ time.
[Classical AG, Parthasarathy 01]: $\operatorname{dim}(U)>(d-1)^{2} \Rightarrow U$ is not entangled

$$
U \text { generic and } \operatorname{dim}(U) \leq(d-1)^{2} \Rightarrow U \text { is entangled }
$$

Algorithm [JLV 22]: Takes poly(d)-time and outputs either: "Hay in a haystack problem"

1. Fail, or
2. A certificate that U is entangled

Works-Extremely-Well Theorem [JLV 22]:
U generic and $\operatorname{dim}(U) \leq \frac{1}{4}(d-1)^{2} \Rightarrow$ Algorithm outputs a certificate that U is entangled

Product pure states: $X_{\text {Sep }}=\left\{|\psi\rangle \otimes|\phi\rangle:|\psi\rangle,|\phi\rangle \in \mathbb{C}^{d}\right\} \subseteq \mathbb{C}^{d} \otimes \mathbb{C}^{d}$
Problem: Given a basis for a linear subspace $U \subseteq \mathbb{C}^{d} \otimes \mathbb{C}^{d}$, determine if U is entangled, i.e. if $U \cap X_{\text {Sep }}=\{0\}$.
[Buss et al 1999]: This is NP-Hard in the worst case.
[Barak et al 2019]: Best known algorithm takes $2^{\tilde{O}(\sqrt{d})}$ time.
[Classical AG, Parthasarathy 01]: $\operatorname{dim}(U)>(d-1)^{2} \Rightarrow U$ is not entangled

$$
U \text { generic and } \operatorname{dim}(U) \leq(d-1)^{2} \Rightarrow U \text { is entangled }
$$

Algorithm [JLV 22]: Takes poly(d)-time and outputs either: "Hay in a haystack problem"

1. Fail, or
2. A certificate that U is entangled, or
3. A separable state $|\boldsymbol{\psi}\rangle \otimes|\boldsymbol{\phi}\rangle \in \boldsymbol{U}$.

Works-Extremely-Well Theorem [JLV 22]:
[J V 22]: WEW Theorem when U contains a generic planted separable state
U generic and $\operatorname{dim}(U) \leq \frac{1}{4}(d-1)^{2} \Rightarrow$ Algorithm outputs a certificate that U is entangled

Product pure states: $X_{\text {Sep }}=\left\{|\psi\rangle \otimes|\phi\rangle:|\psi\rangle,|\phi\rangle \in \mathbb{C}^{d}\right\} \subseteq \mathbb{C}^{d} \otimes \mathbb{C}^{d}$
Problem: Given a basis for a linear subspace $U \subseteq \mathbb{C}^{d} \otimes \mathbb{C}^{d}$, determine if U is entangled, i.e. if $U \cap X_{\text {Sep }}=\{0\}$.
[Buss et al 1999]: This is NP-Hard in the worst case.
[Barak et al 2019]: Best known algorithm takes $2^{\tilde{O}(\sqrt{d})}$ time.
[Classical AG, Parthasarathy 01]: $\operatorname{dim}(U)>(d-1)^{2} \Rightarrow U$ is not entangled

$$
U \text { generic and } \operatorname{dim}(U) \leq(d-1)^{2} \Rightarrow U \text { is entangled }
$$

Algorithm [JLV 22]: Takes poly(d)-time and outputs either: "Hay in a haystack problem"

1. Fail, or
2. A certificate that U is entangled, or This talk: Focus on certification part of algorithm
3. Aseparable state $|\boldsymbol{\psi}\rangle \otimes|\boldsymbol{\phi}\rangle \in \boldsymbol{U}$.

Works-Extremely-Well Theorem [JLV 22]:
[f $\forall 22$]: WEW Theorem when U contains a generic planted separable state
U generic and $\operatorname{dim}(U) \leq \frac{1}{4}(d-1)^{2} \Rightarrow$ Algorithm outputs a certificate that U is entangled

The Algorithm

Product pure states: $X_{\text {Sep }}=\left\{|\psi\rangle \otimes|\phi\rangle:|\psi\rangle,|\phi\rangle \in \mathbb{C}^{d}\right\} \subseteq \mathbb{C}^{d} \otimes \mathbb{C}^{d}$

Problem: Given a basis for a linear subspace $U \subseteq \mathbb{C}^{d} \otimes \mathbb{C}^{d}$, determine if U is entangled, i.e. if $U \cap X_{\text {Sep }}=\{0\}$.

Idea: Problem is difficult because it's non-linear

$$
\left(X_{\text {Sep }} \subseteq \mathbb{C}^{d} \otimes \mathbb{C}^{d} \text { isn't a linear subspace }\right)
$$

Make it linear: Instead check if $U \cap \operatorname{Span}\left(X_{\text {Sep }}\right)=\{0\}$.
Doesn't work: $\operatorname{Span}\left(X_{\mathrm{Sep}}\right)=\mathbb{C}^{d} \otimes \mathbb{C}^{d}$.
Lift it up: Let $X_{\text {Sep }}^{2}=\operatorname{Span}\left\{(|\psi\rangle \otimes|\phi\rangle)^{\otimes 2}:|\psi\rangle,|\phi\rangle \in \mathbb{C}^{d}\right\}=S^{2}\left(\mathbb{C}^{d}\right) \otimes S^{2}\left(\mathbb{C}^{d}\right)$
Check if $U^{\otimes 2} \cap X_{\text {Sep }}^{2}=\{0\}$. Works extremely well!

Product pure states: $X_{\text {Sep }}=\left\{|\psi\rangle \otimes|\phi\rangle:|\psi\rangle,|\phi\rangle \in \mathbb{C}^{d}\right\} \subseteq \mathbb{C}^{d} \otimes \mathbb{C}^{d}$
Problem: Given a basis for a linear subspace $U \subseteq \mathbb{C}^{d} \otimes \mathbb{C}^{d}$, determine if U is entangled, i.e. if $U \cap X_{\text {Sep }}=\{0\}$.
Let $X_{\text {Sep }}^{2}=\operatorname{Span}\left\{(|\psi\rangle \otimes|\phi\rangle)^{\otimes 2}:|\psi\rangle,|\phi\rangle \in \mathbb{C}^{d}\right\}=S^{2}\left(\mathbb{C}^{d}\right) \otimes S^{2}\left(\mathbb{C}^{d}\right)$
Algorithm:
If $U^{\otimes 2} \cap X_{\text {Sep }}^{2}=\{0\}$, output U is entangled
Otherwise, output Fail
Correctness: $|\psi\rangle \otimes|\phi\rangle \in U \Rightarrow(|\psi\rangle \otimes|\phi\rangle)^{\otimes 2} \in U^{\otimes 2} \cap X_{\text {Sep }}^{2}$
\Rightarrow Algorithm outputs Fail.

Algorithm runtime to certify $U \cap X_{\text {Sep }}=\{0\}$

d	$\operatorname{dim}(U)$	time
3	3	0.01 s
4	8	0.03 s
5	13	0.08 s
6	20	0.20 s
7	29	0.49 s
8	39	1.06 s
9	50	2.24 s
10	63	5.56 s

From algorithm to complete hierarchy
(based on Hilbert's Nullstellensatz)

Product pure states: $X_{\text {Sep }}=\left\{|\psi\rangle \otimes|\phi\rangle:|\psi\rangle,|\phi\rangle \in \mathbb{C}^{d}\right\} \subseteq \mathbb{C}^{d} \otimes \mathbb{C}^{d}$
Problem: Given a basis for a linear subspace $U \subseteq \mathbb{C}^{d} \otimes \mathbb{C}^{d}$, determine if U is entangled, i.e. if $U \cap X_{\text {Sep }}=\{0\}$.
Let $X_{\text {Sep }}^{k}=\operatorname{Span}\left\{(|\psi\rangle \otimes|\phi\rangle)^{\otimes k}:|\psi\rangle,|\phi\rangle \in \mathbb{C}^{d}\right\}=S^{k}\left(\mathbb{C}^{d}\right) \otimes S^{k}\left(\mathbb{C}^{d}\right)$
Algorithm k :
If $U^{\otimes k} \cap X_{\text {Sep }}^{k}=\{0\}$, output U is entangled
Otherwise, output Fail
Completeness [Hilbert]: For $k=3^{d^{2}}$, Fail $\Leftrightarrow U$ not entangled

Analogous hierarchies

for other notions of entanglement

Let $X \subseteq \mathbb{C}^{D}$ be nice* (for example, $X=X_{\text {Sep }} \subseteq \mathbb{C}^{d} \otimes \mathbb{C}^{d}$)
Think: "Some set of low entanglement"
*Any conic variety
Problem: Given a basis for a linear subspace $U \subseteq \mathbb{C}^{D}$, determine if U avoids X, i.e. if $U \cap X=\{0\}$.

Let $X \subseteq \mathbb{C}^{D}$ be nice* (for example, $X=X_{\text {Sep }} \subseteq \mathbb{C}^{d} \otimes \mathbb{C}^{d}$)
Think: "Some set of low entanglement" *Any conic variety
Problem: Given a basis for a linear subspace $U \subseteq \mathbb{C}^{D}$, determine if U avoids X, i.e. if $U \cap X=\{0\}$.

Let $X^{k}=\operatorname{Span}\left\{|\psi\rangle^{\otimes k}:|\psi\rangle \in X\right\}$

X

Algorithm k : Takes $D^{O(k)}$ time to check
If $U^{\otimes k} \cap X^{k}=\{0\}$, output U avoids X Otherwise, output Fail

Completeness [Hilbert]: For $k=2^{O(D)}$, Fail $\Leftrightarrow U$ intersects X

Examples

 WEW Theorem [JLV 22]: For generic U of dimension $\operatorname{dim}(U) \leq(0)$ it holds that $U^{\otimes k} \cap X^{k}=\{0\}$ for $k=$ 㯭
Schmidt rank $\leq \boldsymbol{r}$ states

$X_{r}=\left\{|\psi\rangle \in \mathbb{C}^{d} \otimes \mathbb{C}^{d}:\right.$ Schmidt-rank $\left.(|\psi\rangle) \leq r\right\}$
Product states \quad in- $X_{\text {Sep }}$-arable \leftrightarrow Completely entangled
$X_{\text {Sep }}=\left\{\left|\psi_{1}\right\rangle \otimes \cdots \otimes\left|\psi_{m}\right\rangle:\left|\psi_{i}\right\rangle \in \mathbb{C}^{d}\right\}$

Biseparable states \quad in- X_{B}-arable \leftrightarrow Genuinely entangled

$X_{B}=\left\{|\psi\rangle \in\left(\mathbb{C}^{d}\right)^{\otimes m}\right.$: Some bipartition of $|\psi\rangle$ has rank 1$\}$

Slice rank 1 states

$X_{S}=\left\{|\psi\rangle \in\left(\mathbb{C}^{n}\right)^{\otimes m}\right.$: Some 1 v.s. rest bipartition of $|\psi\rangle$ has rank 1$\}$

Matrix product states of bond dimension $\leq \boldsymbol{r}$

$X_{S}=\left\{|\psi\rangle \in\left(\mathbb{C}^{n}\right)^{\otimes m}:\right.$ Every left-right bipartition has rank $\left.\leq r\right\}$
(2) $=\Omega_{r}\left(d^{m}\right)$

跨 $=r+1$

Examples

 WEW Theorem［JLV 22］：For generic U of dimension $\operatorname{dim}(U) \leq(0)$ it holds that $U^{\otimes k} \cap X^{k}=\{0\}$ for $k=$ 㯭
Schmidt rank $\leq r$ states

$X_{r}=\left\{|\psi\rangle \in \mathbb{C}^{d} \otimes \mathbb{C}^{d}:\right.$ Schmidt $\left.-\operatorname{rank}(|\psi\rangle) \leq r\right\}$

Product states \quad in $-X_{\text {Sep }}$－arable \leftrightarrow Completely entangled
$X_{\text {Sep }}=\left\{\left|\psi_{1}\right\rangle \otimes \cdots \otimes\left|\psi_{m}\right\rangle:\left|\psi_{i}\right\rangle \in \mathbb{C}^{d}\right\}$

Biseparable states \quad in－X_{B}－arable \leftrightarrow Genuinely entangled

$X_{B}=\left\{|\psi\rangle \in\left(\mathbb{C}^{d}\right)^{\otimes m}\right.$ ：Some bipartition of $|\psi\rangle$ has rank 1$\}$
（2）$=\Omega_{r}\left(d^{2}\right)$
藘 $=r+1$
（2）$\sim(1 / 4) d^{m}$
踇 $=2$
（2）$\sim(1 / 4) d^{m}$
嘌 $=2$

Slice rank
$X_{S}=\{|\psi\rangle$
Takeaway：Algorithm certifies entanglement of subspaces of dimension a constant multiple of the maximum possible in polynomial time．
（2）$=\Omega_{r}\left(d^{m}\right)$
$X_{S}=\left\{|\psi\rangle \in\left(\mathbb{C}^{n}\right)^{\otimes m}:\right.$ Every left－right bipartition has rank $\left.\leq r\right\}$

品監 $=r+1$

Robust generalization of the hierarchy

Robust generalization:

Instead of determining whether U avoids X,
Compute $h_{X}(U):=\max _{|\psi\rangle \in X}\langle\psi| P_{U}|\psi\rangle$

$$
P_{U}=\operatorname{Proj}(U)
$$

U avoids $X \Leftrightarrow h_{X}(U)<1$

Theorem/Robust Hierarchy [JLV 23+]:
Let $X \subseteq \mathbb{C}^{D}$ be nice*, $U \subseteq \mathbb{C}^{D}$ linear, and $P_{U}=\operatorname{Proj}(U)$.
*Any conic variety
For each k, let $\mu_{k}=\lambda_{\max }\left(P_{X}^{k}\left(P_{U} \otimes I^{\otimes k-1}\right) P_{X}^{k}\right) . \quad P_{X}^{k}=\operatorname{Proj}\left(X^{k}\right)$
Then the μ_{k} form a non-increasing sequence converging to $h_{X}(U):=\max _{|\psi\rangle \in X}\langle\psi| P_{U}|\psi\rangle$.

Robust generalization:

Instead of determining whether U avoids X,
Compute $h_{X}(U):=\max _{|\psi\rangle \in X}\langle\psi| P_{U}|\psi\rangle$

$$
P_{U}=\operatorname{Proj}(U)
$$

U avoids $X \Leftrightarrow h_{X}(U)<1$

Theorem/Robust Hierarchy [JLV 23+]:
Let $X \subseteq \mathbb{C}^{D}$ be nice*, $W \in \operatorname{Herm}\left(\mathbb{C}^{D}\right)$ Hermitian.
*Any conic variety
For each k, let $\mu_{k}=\lambda_{\max }\left(P_{X}^{k}\left(W \otimes I^{\otimes k-1}\right) P_{X}^{k}\right) .-P_{X}^{k}=\operatorname{Proj}\left(X^{k}\right)$
Then the μ_{k} form a non-increasing sequence converging to $h_{X}(W):=\max _{|\psi\rangle \in X}\langle\psi| W|\psi\rangle$.
Theorem/Robust Hierarchy not only holds for P_{U}, but for any Hermitian W !

Robust generalization:

Instead of determining whether U avoids X,
Compute $h_{X}(U):=\max _{|\psi\rangle \in X}\langle\psi| P_{U}|\psi\rangle$

$$
P_{U}=\operatorname{Proj}(U)
$$

$$
U \text { avoids } X \Leftrightarrow h_{X}(U)<1
$$

Extending symmetric extensions to other notions of separability

Theorem/Robust Hierarchy [JLV 23+]:

Let $X \subseteq \mathbb{C}^{D}$ be nice*, $W \in \operatorname{Herm}\left(\mathbb{C}^{D}\right)$ Hermitian.
*Any conic variety
For each k, let $\mu_{k}=\lambda_{\max }\left(P_{X}^{k}\left(W \otimes I^{\otimes k-1}\right) P_{X}^{k}\right) .-P_{X}^{k}=\operatorname{Proj}\left(X^{k}\right)$
Then the μ_{k} form a non-increasing sequence converging to $h_{X}(W):=\max _{|\psi\rangle \in X}\langle\psi| W|\psi\rangle$.

Definition: A density operator $\rho \in \mathrm{D}\left(\mathbb{C}^{D}\right)$ is X-arable if there exist

$$
\left|\psi_{1}\right\rangle, \ldots,\left|\psi_{\ell}\right\rangle \in X \quad \text { such that } \quad \rho=\sum_{i=1}^{\ell} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|
$$

Example: $\rho \in \mathrm{D}\left(\mathbb{C}^{d} \otimes \mathbb{C}^{d}\right)$ is $X_{\text {Sep }}$-arable $\Leftrightarrow \rho$ is separable.

Theorem/Robust Hierarchy [JLV 23+]:

Let $X \subseteq \mathbb{C}^{D}$ be nice*, $W \in \operatorname{Herm}\left(\mathbb{C}^{D}\right)$ Hermitian.
*Any conic variety
For each k, let $\mu_{k}=\lambda_{\text {max }}\left(P_{X}^{k}\left(W \otimes I^{\otimes k-1}\right) P_{X}^{k}\right) .-P_{X}^{k}=\operatorname{Proj}\left(X^{k}\right)$
Then the μ_{k} form a non-increasing sequence converging to $h_{X}(W):=\max _{|\psi\rangle \in X}\langle\psi| W|\psi\rangle$.
Definition: A density operator $\rho \in \mathrm{D}\left(\mathbb{C}^{D}\right)$ is X-arable if there exist

$$
\left|\psi_{1}\right\rangle, \ldots,\left|\psi_{\ell}\right\rangle \in X \quad \text { such that } \quad \rho=\sum_{i=1}^{\ell} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| .
$$

Corollary [J LV 23+]: ρ is X-arable \Leftrightarrow for all k there exists $\sigma \in \mathrm{D}\left(\left(\mathbb{C}^{D}\right)^{\otimes k}\right)$ such that $\quad \operatorname{Tr}_{2,3, \ldots, \mathrm{k}}(\sigma)=\rho \quad$ and $\quad \operatorname{Im}(\sigma) \subseteq X^{k}=\operatorname{Span}\left\{|\psi\rangle^{\otimes k}:|\psi\rangle \in X\right\}$ " σ is an extension of ρ "
Example (Symmetric extensions) [DPS 04]: ρ is separable \Leftrightarrow For all k there exists an extension σ of ρ such that $\operatorname{Im}(\sigma) \subseteq X_{\text {Sep }}^{k}=S^{k}\left(\mathbb{C}^{d}\right) \otimes S^{k}\left(\mathbb{C}^{d}\right) \longleftarrow$ Symmetric

Theorem/Robust Hierarchy [JLV 23+]:

Let $X \subseteq \mathbb{C}^{D}$ be nice*, $W \in \operatorname{Herm}\left(\mathbb{C}^{D}\right)$ Hermitian.
*Any conic variety
For each k, let $\mu_{k}=\lambda_{\max }\left(P_{X}^{k}\left(W \otimes I^{\otimes k-1}\right) P_{X}^{k}\right) .-P_{X}^{k}=\operatorname{Proj}\left(X^{k}\right)$
Then the μ_{k} form a non-increasing sequence converging to $h_{X}(W):=\max _{|\psi\rangle \in X}\langle\psi| W|\psi\rangle$.
Definition: A density operator $\rho \in \mathrm{D}\left(\mathbb{C}^{D}\right)$ is X-arable if there exist

$$
\left|\psi_{1}\right\rangle, \ldots,\left|\psi_{\ell}\right\rangle \in X \quad \text { such that } \quad \rho=\sum_{i=1}^{\ell} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| .
$$

Corollary [J LV 23+]: ρ is X-arable \Leftrightarrow for all k there exists $\sigma \in \mathrm{D}\left(\left(\mathbb{C}^{D}\right)^{\otimes k}\right)$ such that $\quad \operatorname{Tr}_{2,3, \ldots, \mathrm{k}}(\sigma)=\rho \quad$ and $\quad \operatorname{Im}(\sigma) \subseteq X^{k}=\operatorname{Span}\left\{|\psi\rangle^{\otimes k}:|\psi\rangle \in X\right\}$ " σ is an extension of ρ "

Proof uses robust hierarchy and the Hyperplane separation theorem:

ρ is X-arable $\quad \Leftrightarrow \quad \operatorname{Tr}(\rho W) \leq 0$ for all W such that $h_{X}(W) \leq 0$

Examples Theorem [JLV 23+]: ρX-arable $\Leftrightarrow \forall k \exists$ extension σ of ρ s.t.

$$
\operatorname{Im}(\sigma) \subseteq X^{k}=\operatorname{Span}\left\{|\psi\rangle^{\otimes k}:|\psi\rangle \in X\right\}
$$

Schmidt rank $\leq \boldsymbol{r}$ states [TMG 15] ρX_{r}-able $\Leftrightarrow \quad \forall k \exists$ extension σ of ρ s.t.
$X_{r}=\left\{|\psi\rangle \in \mathbb{C}^{d} \otimes \mathbb{C}^{d}: \operatorname{SR}(|\psi\rangle) \leq r\right\} \quad \operatorname{Im}(\sigma) \subseteq S^{k}\left(\mathbb{C}^{d} \otimes \mathbb{C}^{d}\right) \cap\left(\left(\wedge^{r+1}\left(\mathbb{C}^{d}\right)^{\otimes 2}\right)^{\perp} \otimes\left(\mathbb{C}^{d} \otimes \mathbb{C}^{d}\right)^{\otimes k-r-1}\right)$

> | Product states [DPS 04] | ρ separable |
| :--- | :---: |
| $X_{\text {Sep }}=\left\{\left\|\psi_{1}\right\rangle \otimes \cdots \otimes\left\|\psi_{m}\right\rangle:\left\|\psi_{i}\right\rangle \in \mathbb{C}^{d}\right\}$ | \Leftrightarrow |
| \exists extension σ of ρ s.t. \quad | $\operatorname{Im}(\sigma) \subseteq S^{k}\left(\mathbb{C}^{d}\right) \otimes \cdots \otimes S^{k}\left(\mathbb{C}^{d}\right)$ |

Biseparable states $\quad \rho$ biseparable $\Leftrightarrow \forall k \exists$ extension σ of ρ s.t
$X_{B}=\left\{|\psi\rangle \in\left(\mathbb{C}^{d}\right)^{\otimes m}: \operatorname{SR}(|\psi\rangle)=1\right.$ in some cut $\}$ $\operatorname{Im}(\sigma) \subseteq \sum_{T \subseteq[m]} S^{k}\left(\left(\mathbb{C}^{d}\right)^{\otimes T}\right) \otimes S^{k}\left(\left(\mathbb{C}^{d}\right)^{\otimes[m]-T}\right)$

| Slice rank 1 states $\quad \rho X_{S}$-arable \Leftrightarrow | $\forall k \exists$ extension σ of ρ s.t |
| :--- | :---: | :---: |
| $X_{S}=\left\{\|\psi\rangle \in\left(\mathbb{C}^{n}\right)^{\otimes m}: \operatorname{SR}(\|\psi\rangle)=1\right.$ in some 1 vs. rest $\}$ | $\operatorname{Im}(\sigma) \subseteq \sum_{i=1}^{m} S^{k}\left(\mathbb{C}^{d}\right) \otimes S^{k}\left(\left(\mathbb{C}^{d}\right)^{\otimes m-1}\right)$ |

MPS of bond dimension $\leq \boldsymbol{r} \quad \rho X_{\mathrm{MPS}, r}$-arable $\quad \Leftrightarrow \quad \forall k \exists$ extension σ of ρ s.t
$X_{\mathrm{MPS}, r}=\left\{|\psi\rangle \in\left(\mathbb{C}^{n}\right)^{\otimes m}:\right.$ Every L-R cut has $\left.\mathrm{SR} \leq r\right\}$

Examples Theorem [JLV 23+]: ρX-arable $\Leftrightarrow \forall k \exists$ extension σ of ρ s.t.

$$
\operatorname{Im}(\sigma) \subseteq X^{k}=\operatorname{Span}\left\{|\psi\rangle^{\otimes k}:|\psi\rangle \in X\right\}
$$

Schmidt rank $\leq \boldsymbol{r}$ states [TMG 15] ρX_{r}-able $\Leftrightarrow \quad \forall k \exists$ extension σ of ρ s.t.
$X_{r}=\left\{|\psi\rangle \in \mathbb{C}^{d} \otimes \mathbb{C}^{d}: \operatorname{SR}(|\psi\rangle) \leq r\right\} \operatorname{Im}(\sigma) \subseteq S^{k}\left(\mathbb{C}^{d} \otimes \mathbb{C}^{d}\right) \cap\left(\left(\wedge^{r+1}\left(\mathbb{C}^{d}\right)^{\otimes 2}\right)^{\perp} \otimes\left(\mathbb{C}^{d} \otimes \mathbb{C}^{d}\right)^{\otimes k-r-1}\right)$

Product states [DPS 041

$X_{\text {Sep }}=\{\mid \psi$ Takeaway:
Biseparable Symmetric extensions hierarchy for separability
$X_{B}=\{|\psi\rangle \epsilon$ Linearly constrained extensions hierarchy for X-arability

$$
\rho X_{S} \text {-arable } \quad \Leftrightarrow \quad \forall k \exists \text { extension } \sigma \text { of } \rho \text { s.t }
$$

Slice rank 1 states
$X_{S}=\left\{|\psi\rangle \in\left(\mathbb{C}^{n}\right)^{\otimes m}: \operatorname{SR}(|\psi\rangle)=1\right.$ in some 1 vs. rest $\}$

$$
\operatorname{Im}(\sigma) \subseteq \sum_{i=1}^{m} S^{k}\left(\mathbb{C}^{d}\right) \otimes S^{k}\left(\left(\mathbb{C}^{d}\right)^{\otimes m-1}\right)
$$

MPS of bond dimension $\leq \boldsymbol{r} \quad \rho X_{\mathrm{MPS}, r}$-arable $\quad \Leftrightarrow \quad \forall k \exists$ extension σ of ρ s.t
$X_{\mathrm{MPS}, r}=\left\{|\psi\rangle \in\left(\mathbb{C}^{n}\right)^{\otimes m}:\right.$ Every L-R cut has $\left.\mathrm{SR} \leq r\right\}$

Conclusion

1. Complete hierarchies of linear systems to certify entanglement of a subspace. These work extremely well already at early levels.

Title: Complete hierarchy of linear systems for certifying quantum entanglement of subspaces
2. (Briefly mentioned) poly-time algorithms to find low-entanglement elements of a subspace. These also work extremely well.

Title: Computing linear sections of varieties: quantum entanglement, tensor decompositions and beyond
3. Extending symmetric extensions: Separability testing hierarchy of [DPS 04] extended to hierarchies for Schmidt number, biseparability, and X-arability. Title: TBD

A complete hierarchy of linear systems for certifying quantum entanglement of subspaces

Nathaniel Johnston ${ }^{1}$ Benjamin Lovitz ${ }^{2}$ Aravindan Vijayaraghavan ${ }^{3}$

1. Mount Allison University
2. NSF Postdoc, Northeastern University
3. Northwestern University

QIP 2023
February 6, 2023

Northeastern
University

