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Motivation

? Particles, when left unobserved, exist in multiple places at
once.

? Quantum walks are derived from Shrödinger’s equation

? i~∂Ψ(x ,t)
∂t =

[
− ~2

2m
∂2

∂x2 + V (x)
]

Ψ(x , t)

? Perfect State Transfer

? Quantum Algorithms

� Factoring Algorithm (1994 Peter Shor)

Rachael Alvir, Sophia Dever, Ben Lovitz, James Myer Quantum Walks on Graphs



Motivation

? Particles, when left unobserved, exist in multiple places at
once.

? Quantum walks are derived from Shrödinger’s equation

? i~∂Ψ(x ,t)
∂t =

[
− ~2

2m
∂2

∂x2 + V (x)
]

Ψ(x , t)

? Perfect State Transfer

? Quantum Algorithms

� Factoring Algorithm (1994 Peter Shor)

Rachael Alvir, Sophia Dever, Ben Lovitz, James Myer Quantum Walks on Graphs



Motivation

? Particles, when left unobserved, exist in multiple places at
once.

? Quantum walks are derived from Shrödinger’s equation

? i~∂Ψ(x ,t)
∂t =

[
− ~2

2m
∂2

∂x2 + V (x)
]

Ψ(x , t)

? Perfect State Transfer

? Quantum Algorithms

� Factoring Algorithm (1994 Peter Shor)

Rachael Alvir, Sophia Dever, Ben Lovitz, James Myer Quantum Walks on Graphs



Motivation

? Particles, when left unobserved, exist in multiple places at
once.

? Quantum walks are derived from Shrödinger’s equation

? i~∂Ψ(x ,t)
∂t =

[
− ~2

2m
∂2

∂x2 + V (x)
]

Ψ(x , t)

? Perfect State Transfer

? Quantum Algorithms

� Factoring Algorithm (1994 Peter Shor)

Rachael Alvir, Sophia Dever, Ben Lovitz, James Myer Quantum Walks on Graphs



Motivation

? Particles, when left unobserved, exist in multiple places at
once.

? Quantum walks are derived from Shrödinger’s equation

? i~∂Ψ(x ,t)
∂t =

[
− ~2

2m
∂2

∂x2 + V (x)
]

Ψ(x , t)

? Perfect State Transfer

? Quantum Algorithms

� Factoring Algorithm (1994 Peter Shor)

Rachael Alvir, Sophia Dever, Ben Lovitz, James Myer Quantum Walks on Graphs



Motivation

? Particles, when left unobserved, exist in multiple places at
once.

? Quantum walks are derived from Shrödinger’s equation

? i~∂Ψ(x ,t)
∂t =

[
− ~2

2m
∂2

∂x2 + V (x)
]

Ψ(x , t)

? Perfect State Transfer

? Quantum Algorithms

� Factoring Algorithm (1994 Peter Shor)

Rachael Alvir, Sophia Dever, Ben Lovitz, James Myer Quantum Walks on Graphs



Dirac Notation

? Instead of writing a vector ~v , we write |v〉. Scalar
multiplication by α is α|v〉.

? To write the inner product of vectors |v〉 and |u〉, we write
〈v |u〉

? |v〉 denotes a column vector and 〈u| denotes a row vector.

|v〉 =


v1

v2
...
vn

 〈u| =
[
u1 u2 . . . un

]

? When a scalar i is placed inside the Dirac brackets, it
represents a vector of all zeroes except a single 1 (one) in the
i th entry.

〈i | =
[
01 . . . 0i−1 1i 0i+1 . . . 0n

]
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Definitions

? Given a graph G = (V ,E ), we define its adjacency matrix
A(G ) as

Ai ,j = 〈j |A|i〉 =

{
1 if (vi , vj) ∈ E (G )

0 otherwise.

? We define the Laplacian matrix L(G ) as

Li ,j = 〈j |L|i〉 =


1 if (vi , vj) ∈ E (G )

−d(vj) if i = j

0 otherwise.
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More Definitions!

? An adjacency quantum walk on a graph G is given by

U(t) ≡ e−itA =
∞∑
k=0

(−it)k

k!
Ak ;

? Remember this lovely specimen?

i~∂Ψ(x ,t)
∂t =

[
− ~2

2m
∂2

∂x2 + V (x)
]

Ψ(x , t),

? The quantum walk can also be set up physically when the
Laplacian is used in place of the adjacency matrix.

? The probability of starting at a vertex a and ending at a

vertex b at time t̃ is given by
∣∣∣〈b|U(t̃)|a〉

∣∣∣2.
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Quantum Walks on Graphs

? Definition: Given a graph G , we say there is perfect state
transfer (PST ) from vertex a to vertex b if there is a time t̃

such that
∣∣∣〈b|U(t̃)|a〉

∣∣∣2 = 1.

? The state transfer is pretty good (PGST ) if for all ε > 0 there

exists t̃ such that
∣∣∣〈b|U(t̃)|a〉

∣∣∣2 ≥ 1− ε.

? We usually evaluate whether a graph exhibits PST or PGST
(or neither) using the Spectral Decomposition Theorem:
Any n-vertex adjacency (or Laplacian) matrix with eigenvalues
λk and eigenvectors vk can be written as the sum
A =

∑n
k=0 λk |vk〉〈vk |

? The quantum walk then becomes U(t) =
∑n

k=0 e
−itλk |vk〉〈vk |
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A sample calculation in n parts (n ∈ N)

1 Why Q2?

2 Graph to Matrix

3 Matrix to Eigenstuff

4 Eigenstuff to Quantum Walk

5 Quantum Walk to PST (Or not? Spoilers!)
Rachael Alvir, Sophia Dever, Ben Lovitz, James Myer Quantum Walks on Graphs



Hypercubes

Figure: Tesseract = Q4 = 4D hypercube
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Hypercubes

a b

c d e f

g h

i j

k l m n

o p

Figure: Tesseract = Q4 = 4D hypercube
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Q2: Graph

a

d

b c

Figure: Q2
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Q2: Adjacency Matrix

a b c d
↓ ↓ ↓ ↓

a→
b →
c →
d →
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Q2: Adjacency Matrix

a b c d
↓ ↓ ↓ ↓

a→ 0
b → 0
c → 0
d → 0
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Q2: Adjacency Matrix

a b c d
↓ ↓ ↓ ↓

a→ 0 1 1
b → 1 0 1
c → 1 0 1
d → 1 1 0
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Q2: Adjacency Matrix

a b c d
↓ ↓ ↓ ↓

a→ 0 1 1 0
b → 1 0 0 1
c → 1 0 0 1
d → 0 1 1 0

Rachael Alvir, Sophia Dever, Ben Lovitz, James Myer Quantum Walks on Graphs



Q2: Adjacency Matrix


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0


Next up: Spectral Decomposition Theorem!
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Q2: Eigenvalues

∣∣∣∣∣∣∣∣
−λ 1 1 0
1 −λ 0 1
1 0 −λ 1
0 1 1 −λ

∣∣∣∣∣∣∣∣
= λ2(λ + 2)(λ− 2) = 0
→ λ = 0,±2
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Q2: Eigenvectors


−λ 1 1 0
1 −λ 0 1
1 0 −λ 1
0 1 1 −λ




a
b
c
d

 =


a
b
c
d



λ = 0 :


0
−1
1
0

 ,


−1
0
0
1

 ;λ = 2 :


1
1
1
1

 ;λ = −2 :


1
−1
−1
1


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Quantum Walk

e−itM = quantum walk on M

1

2


cos(2t) + 1 −i sin(2t) −i sin(2t) cos(2t)− 1
−i sin(2t) cos(2t) + 1 cos(2t)− 1 −i sin(2t)
−i sin(2t) cos(2t)− 1 cos(2t) + 1 −i sin(2t)
cos(2t)− 1 −i sin(2t) −i sin(2t) cos(2t) + 1


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Moment of Truth: PST?

Figure: Quantum walk on Q2
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Calculating PST

So we have a method! But it’s:

1 Hard

2 Slow

3 Boring

4 Involves arithmetic

5 Gets exponentially worse on big graphs

We can also use programs. But they have problems
too:

1 Only an approximation

2 Hard to differentiate between PST and P(retty Good)ST

3 Not a rigorous proof

4 Buggy

5 Still get exponentially worse on big graphs

So now what?
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The Panacea: Quotient Graphs

What if we could turn this...

a bf

g

h

i

e

d

c

Figure: Ugly Graph
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The Panacea: Quotient Graphs

... into this?

a bf

Figure: Pretty Graph
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Partitions

A partition is denoted by π (for obvious reasons).

Figure: Partitioning a circle
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Partitions

ca b

d

ihgfe j k l m

Figure: A sample partition
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Almost-Equitable Partitions

Almost-Equitable Partition:

∀A,B partitions, ∀a1, a2 ∈ A,∑
b∈B

{
1 if (a1, b) ∈ E

0 otherwise
=
∑
b∈B

{
1 if (a2, b) ∈ E

0 otherwise

Translation: Any two points in the same partition
must have the same number of edges going from

them into any given other partition.
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Equitable Partition

Equitable Partition = almost-equitable + each
subgraph is regular

a

b

c d

e

h

i

g

f

Figure: A sample partition
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Almost-Equitable Partitions

a bf

g

h

i

e

d

c

Figure: An almost-equitable partition π
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Quotient Graph

a bc

Figure: A quotient graph (almost)
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Quotient Graph

a bc

√
n

√
n

Figure: A quotient graph G/π
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What We’ve Done

Theorem. Let H be any graph of n vertices. Let G = K2 + H.
Let π =

⋃
k Vk be any almost equitable partition of G .

Then, G/π has PST from a to b when analyzed with its Laplacian
matrix L(G/π) iff n ≡ 2 mod 4.
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Spectra of L(G/π)

The Laplacian of G , L(G/π), is given by: n −
√
n 0

−
√
n 2 −

√
n

0 −
√
n n


The eigenvalues of L(G/π) include 0, n, n + 2. The
eigenvalue/eigenvector pairs with their respective normalizing
constants are:

λ = 0,
1

√
2 + n

 1√
n

1

 ;λ = n,
1
√

2

 1
0
−1

 ;λ = n + 2,
1√

2(n + 2)

 √n−2√
n



Rachael Alvir, Sophia Dever, Ben Lovitz, James Myer Quantum Walks on Graphs



Quantum Walk on L(G/π)

By the Spectral Decomposition Theorem, the quantum walk from
a to b on L(G/π) is given by:

〈b|e−itL(G/π)|a〉 =
1

2 + n
−

e−it(n)

2
+

ne−it(n+2)

2(2 + n)
= −

e−it(n)

2
+

2 + ne−it(n+2)

2(2 + n)
.
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n ≡ 2 mod 4 =⇒ G/π has PST from a to b

Since n ≡ 2 mod 4, n = 4k + 2 = 2(2k + 1) for some k ∈ Z.
Choose t = π

2 . Then,

e−it(n) = cos((2k + 1)π) + isin((2k + 1)π) = −1.

Also,

e−it(n+2) = cos((2(k + 1))π) + isin((2(k + 1))π) = 1.

Since e−it(n) = −1 and e−it(n+2) = 1,

| − e−it(n)

2
+

2 + ne−it(n+2)

2(2 + n)
| = | − −1

2
+

2 + n

2(2 + n)
| = 1.
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G/π has PST from a to b =⇒ n ≡ 2 mod 4

Since G/π has PST from a to b, for some time t ∈ R,

| 1

2 + n
− e−it(n)

2
+

ne−it(n+2)

2(2 + n)
| = 1.

Observe that 1
2+n = 1

2+ne
i(2π)k for some k ∈ Z. Then,

| 1

2 + n
e i(2π)k +

e i(−(nt+π))

2
+

ne i(−t(n+2))

2(2 + n)
| = 1.
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Borrowing a Lemma from REU 2013

Since { 1
2+n ,

1
2 ,

n
2(2+n)} is a positive set of real numbers such that

1

2 + n
+

1

2
+

n

2(2 + n)
= 1

and {(2π)k ,−(nt + π),−t(n + 2)} is a set of real numbers such
that

| 1

2 + n
e i(2π)k +

e i(−(nt+π))

2
+

ne i(−t(n+2))

2(2 + n)
| = 1,

there exists α ∈ R such that

α = (2π)k = −(nt + π) = −t(n + 2).
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Continued

Then,

π = 2t =⇒ 2(2t)k = −t(n + 2) =⇒ n = −(4k + 2).

Hence, n ≡ 2 mod 4.
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Recent Godsil-free Development

Theorem. Assume G is a hypercube besides K2, and H is an
arbitrary graph on n vertices where n is a multiple of 4. Then the
join G + H will preserve the Laplacian PST on G with equal
periodicity.
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Where We’re Going

The question: Suppose a graph G exhibits PST. What
can we do to preserve PST on G?

What types of graph operations may we use on G and
preserve its PST?

Can we invent new graph operations or generalize existing
graph operations to help answer this question?

When we experiment with the type of PST which occurs
(Laplacian vs. Adjacency), will our results change?
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Types of Graph Operations

1 The G-Join, G [G1,G2, . . . ,Gm]

2 The Weak product

3 The Strong product

4 The Lexicographic product

Rachael Alvir, Sophia Dever, Ben Lovitz, James Myer Quantum Walks on Graphs



G-Join

a b

c

d

e

f

Figure: C3[P2,P2,P2, ]
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Types of Laplacian Matrices

1 The regular laplacian, L(G ) = A− D [Join]

2 The signless laplacian, L(G ) = A + D [Line Graphs]

3 The normalized laplacian, L(G ) = D−1/2(A− D)D−1/2

[Weak/Strong/Lexicographic Product]
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Quantum Walks on Line Graphs

a

b

c d

e1

e2

e3

e4

Figure: Original graph
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Line Graphs

e1 e2

e3e4

Figure: The Line Graph

There is a relationship between the quantum walk on the Line
Graph and the quantum walk on the original graph.
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