Rachael Alvir, Sophia Dever, Ben Lovitz, James Myer

SUNY Potsdam

2014

Rachael Alvir, Sophia Dever, Ben Lovitz, James Myer Quantum Walks on Graphs

- Motivation
- Oirac Notation
- Quantum Walks
- Search Example: Hypercubes!
- Quotient Graphs
- What we've Done
- Where we're Going

$\star\,$ Particles, when left unobserved, exist in multiple places at once.

- $\star\,$ Particles, when left unobserved, exist in multiple places at once.
- $\star\,$ Quantum walks are derived from Shrödinger's equation

- $\star\,$ Particles, when left unobserved, exist in multiple places at once.
- $\star\,$ Quantum walks are derived from Shrödinger's equation

*
$$i\hbar \frac{\partial \Psi(x,t)}{\partial t} = \left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(x)\right]\Psi(x,t)$$

- $\star\,$ Particles, when left unobserved, exist in multiple places at once.
- $\star\,$ Quantum walks are derived from Shrödinger's equation

*
$$i\hbar \frac{\partial \Psi(x,t)}{\partial t} = \left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(x)\right]\Psi(x,t)$$

* Perfect State Transfer

- $\star\,$ Particles, when left unobserved, exist in multiple places at once.
- $\star\,$ Quantum walks are derived from Shrödinger's equation

*
$$i\hbar \frac{\partial \Psi(x,t)}{\partial t} = \left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(x)\right]\Psi(x,t)$$

- * Perfect State Transfer
- * Quantum Algorithms

- $\star\,$ Particles, when left unobserved, exist in multiple places at once.
- $\star\,$ Quantum walks are derived from Shrödinger's equation

*
$$i\hbar \frac{\partial \Psi(x,t)}{\partial t} = \left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(x)\right]\Psi(x,t)$$

- * Perfect State Transfer
- * Quantum Algorithms
- Factoring Algorithm (1994 Peter Shor)

* Instead of writing a vector \vec{v} , we write $|v\rangle$. Scalar multiplication by α is $\alpha |v\rangle$.

- * Instead of writing a vector \vec{v} , we write $|v\rangle$. Scalar multiplication by α is $\alpha |v\rangle$.
- $\star\,$ To write the inner product of vectors $|v\rangle$ and $|u\rangle,$ we write $\langle v|u\rangle$

- * Instead of writing a vector \vec{v} , we write $|v\rangle$. Scalar multiplication by α is $\alpha |v\rangle$.
- $\star\,$ To write the inner product of vectors $|v\rangle$ and $|u\rangle,$ we write $\langle v|u\rangle$
- $\star~|v\rangle$ denotes a column vector and $\langle u|$ denotes a row vector.

$$|\mathbf{v}\rangle = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_n \end{bmatrix} \qquad \langle u| = \begin{bmatrix} u_1 & u_2 & \dots & u_n \end{bmatrix}$$

- * Instead of writing a vector \vec{v} , we write $|v\rangle$. Scalar multiplication by α is $\alpha |v\rangle$.
- $\star\,$ To write the inner product of vectors $|v\rangle$ and $|u\rangle,$ we write $\langle v|u\rangle$
- \star |v
 angle denotes a column vector and $\langle u|$ denotes a row vector.

$$|v\rangle = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \qquad \langle u| = \begin{bmatrix} u_1 & u_2 & \dots & u_n \end{bmatrix}$$

* When a scalar *i* is placed inside the Dirac brackets, it represents a vector of all zeroes except a single 1 (one) in the i^{th} entry.

$$\langle i| = \begin{bmatrix} 0_1 & \dots & 0_{i-1} & 1_i & 0_{i+1} & \dots & 0_n \end{bmatrix}$$

Definitions

* Given a graph G = (V, E), we define its *adjacency matrix* A(G) as

$$A_{i,j} = \langle j | A | i
angle = egin{cases} 1 & ext{if } (v_i, v_j) \in E(G) \ 0 & ext{otherwise.} \end{cases}$$

< □ > < □ > < □ >

Definitions

* Given a graph G = (V, E), we define its *adjacency matrix* A(G) as

$$egin{aligned} & A_{i,j} = \langle j | A | i
angle = egin{cases} 1 & ext{if } (v_i, v_j) \in E(G) \ 0 & ext{otherwise.} \end{aligned}$$

 \star We define the Laplacian matrix L(G) as

$$L_{i,j} = \langle j | L | i \rangle = \begin{cases} 1 & \text{if } (v_i, v_j) \in E(G) \\ -d(v_j) & \text{if } i = j \\ 0 & \text{otherwise.} \end{cases}$$

* An adjacency quantum walk on a graph G is given by $U(t) \equiv e^{-itA} = \sum_{k=0}^{\infty} \frac{(-it)^k}{k!} A^k;$

- * An adjacency quantum walk on a graph G is given by $U(t) \equiv e^{-itA} = \sum_{k=0}^{\infty} \frac{(-it)^k}{k!} A^k;$
- * Remember this lovely specimen? $i\hbar \frac{\partial \Psi(x,t)}{\partial t} = \left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x) \right] \Psi(x,t),$

* An adjacency quantum walk on a graph G is given by $U(t) = e^{-itA} - \sum_{k=0}^{\infty} \frac{(-it)^{k}}{2} \Delta^{k}.$

$$U(t) \equiv e^{-itA} = \sum_{k=0}^{\infty} \frac{(-it)}{k!} A^k;$$

- * Remember this lovely specimen? $i\hbar \frac{\partial \Psi(x,t)}{\partial t} = \left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x) \right] \Psi(x,t),$
- The *quantum walk* can also be set up physically when the Laplacian is used in place of the adjacency matrix.

* An adjacency quantum walk on a graph G is given by $H(t) = e^{-itA} \sum_{k=0}^{\infty} (-it)^{k} e^{k}$

$$U(t) \equiv e^{-itA} = \sum_{k=0}^{\infty} \frac{(-it)}{k!} A^k;$$

- * Remember this lovely specimen? $i\hbar \frac{\partial \Psi(x,t)}{\partial t} = \left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x) \right] \Psi(x,t),$
- The *quantum walk* can also be set up physically when the Laplacian is used in place of the adjacency matrix.
- * The probability of starting at a vertex *a* and ending at a vertex *b* at time \tilde{t} is given by $|\langle b|U(\tilde{t})|a\rangle|^2$.

* **Definition:** Given a graph *G*, we say there is *perfect state transfer* (*PST*) from vertex *a* to vertex *b* if there is a time \tilde{t} such that $|\langle b|U(\tilde{t})|a\rangle|^2 = 1$.

- * **Definition:** Given a graph *G*, we say there is *perfect state transfer* (*PST*) from vertex *a* to vertex *b* if there is a time \tilde{t} such that $|\langle b|U(\tilde{t})|a\rangle|^2 = 1$.
- * The state transfer is pretty good (PGST) if for all $\epsilon > 0$ there exists \tilde{t} such that $|\langle b|U(\tilde{t})|a\rangle|^2 \ge 1 \epsilon$.

- * **Definition:** Given a graph *G*, we say there is *perfect state transfer* (*PST*) from vertex *a* to vertex *b* if there is a time \tilde{t} such that $|\langle b|U(\tilde{t})|a\rangle|^2 = 1$.
- * The state transfer is pretty good (PGST) if for all $\epsilon > 0$ there exists \tilde{t} such that $|\langle b|U(\tilde{t})|a\rangle|^2 \ge 1 \epsilon$.
- * We usually evaluate whether a graph exhibits *PST* or *PGST* (or neither) using the **Spectral Decomposition Theorem**: Any *n*-vertex adjacency (or Laplacian) matrix with eigenvalues λ_k and eigenvectors v_k can be written as the sum $A = \sum_{k=0}^n \lambda_k |v_k\rangle \langle v_k |$

- * **Definition:** Given a graph *G*, we say there is *perfect state transfer* (*PST*) from vertex *a* to vertex *b* if there is a time \tilde{t} such that $|\langle b|U(\tilde{t})|a\rangle|^2 = 1$.
- * The state transfer is pretty good (PGST) if for all $\epsilon > 0$ there exists \tilde{t} such that $|\langle b|U(\tilde{t})|a\rangle|^2 \ge 1 \epsilon$.
- * We usually evaluate whether a graph exhibits *PST* or *PGST* (or neither) using the **Spectral Decomposition Theorem**: Any *n*-vertex adjacency (or Laplacian) matrix with eigenvalues λ_k and eigenvectors v_k can be written as the sum $A = \sum_{k=0}^n \lambda_k |v_k\rangle \langle v_k |$
- \star The quantum walk then becomes $U(t) = \sum_{k=0}^{n} e^{-it\lambda_k} |v_k\rangle \langle v_k|$

A SAMPLE CALCULATION IN *n* PARTS $(n \in \mathbb{N})$

Oraph to Matrix

Matrix to Eigenstuff

Eigenstuff to Quantum Walk

Quantum Walk to PST (Or not? Spoilers!) --

Rachael Alvir, Sophia Dever, Ben Lovitz, James Myer

Figure: Tesseract = Q4 = 4D hypercube

(日)

Rachael Alvir, Sophia Dever, Ben Lovitz, James Myer Quantum Walks on Graphs

Hypercubes

Figure: Tesseract = Q4 = 4D hypercube

・ロッ ・ 同 ・ ・ ヨ ・ ・

3 x 3

Q2: Graph

<ロ> <同> <同> < 同> < 同>

・ 同 ト ・ ヨ ト ・ ヨ ト

< 同 > < ヨ > < ヨ >

< 同 > < ヨ > < ヨ >

$\left(\begin{array}{rrrr} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{array}\right)$

Next up: Spectral Decomposition Theorem!

Rachael Alvir, Sophia Dever, Ben Lovitz, James Myer Quantum Walks on Graphs

Q2: Eigenvalues

Q2: Eigenvectors

$$\begin{pmatrix} -\lambda & 1 & 1 & 0 \\ 1 & -\lambda & 0 & 1 \\ 1 & 0 & -\lambda & 1 \\ 0 & 1 & 1 & -\lambda \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$$
$$\lambda = 0 : \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}; \lambda = 2 : \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}; \lambda = -2 : \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \\ 1 \end{pmatrix}$$

・日・ ・ヨ・ ・ヨ・

$e^{-itM} = quantum walk on M$

$$\frac{1}{2} \begin{pmatrix} \cos(2t) + 1 & -i \sin(2t) & -i \sin(2t) & \cos(2t) - 1 \\ -i \sin(2t) & \cos(2t) + 1 & \cos(2t) - 1 & -i \sin(2t) \\ -i \sin(2t) & \cos(2t) - 1 & \cos(2t) + 1 & -i \sin(2t) \\ \cos(2t) - 1 & -i \sin(2t) & -i \sin(2t) & \cos(2t) + 1 \end{pmatrix}$$

Moment of Truth: PST?

Figure: Quantum walk on Q2

So we have a method! But it's:

- Hard
- Ø Slow
- Boring
- Involves arithmetic
- Gets exponentially worse on big graphs

WE CAN ALSO USE PROGRAMS. BUT THEY HAVE PROBLEMS TOO:

- Only an approximation
- I Hard to differentiate between PST and P(retty Good)ST
- Not a rigorous proof
- Ø Buggy
- Still get exponentially worse on big graphs

So now what?

The Panacea: Quotient Graphs

What if we could turn this...

Figure: Ugly Graph

... into this?

Rachael Alvir, Sophia Dever, Ben Lovitz, James Myer Quantum Walks on Graphs

Partitions

A partition is denoted by π (for obvious reasons).

Figure: Partitioning a circle

Rachael Alvir, Sophia Dever, Ben Lovitz, James Myer Quantum Walks on Graphs

Partitions

Figure: A sample partition

<ロ> <同> <同> < 同> < 同>

э

Almost-Equitable Partition:

$$\forall A, B \text{ partitions, } \forall a_1, a_2 \in A, \\ \sum_{b \in B} \begin{cases} 1 \text{ if } (a_1, b) \in E \\ 0 \text{ otherwise} \end{cases} = \sum_{b \in B} \begin{cases} 1 \text{ if } (a_2, b) \in E \\ 0 \text{ otherwise} \end{cases}$$

Translation: Any two points in the same partition must have the same number of edges going from them into any given other partition. **Equitable Partition**

Equitable Partition = almost-equitable + each subgraph is regular

Figure: A sample partition

Almost-Equitable Partitions

Quotient Graph

Quotient Graph

Figure: A quotient graph G/π

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem. Let *H* be any graph of *n* vertices. Let $G = \overline{K_2} + H$. Let $\pi = \bigcup_k V_k$ be any almost equitable partition of *G*. Then, G/π has PST from a to b when analyzed with its Laplacian matrix $L(G/\pi)$ iff $n \equiv 2 \mod 4$. The Laplacian of G, $L(G/\pi)$, is given by:

$$\left[\begin{array}{rrrr} n & -\sqrt{n} & 0\\ -\sqrt{n} & 2 & -\sqrt{n}\\ 0 & -\sqrt{n} & n \end{array}\right]$$

The eigenvalues of $L(G/\pi)$ include 0, n, n + 2. The eigenvalue/eigenvector pairs with their respective normalizing constants are:

$$\lambda = 0, \frac{1}{\sqrt{2+n}} \begin{bmatrix} 1\\ \sqrt{n}\\ 1 \end{bmatrix}; \lambda = n, \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix}; \lambda = n+2, \frac{1}{\sqrt{2(n+2)}} \begin{bmatrix} \sqrt{n}\\ -2\\ \sqrt{n} \end{bmatrix}$$

By the Spectral Decomposition Theorem, the quantum walk from *a* to *b* on $L(G/\pi)$ is given by:

$$\langle b|e^{-itL(G/\pi)}|a\rangle = \frac{1}{2+n} - \frac{e^{-it(n)}}{2} + \frac{ne^{-it(n+2)}}{2(2+n)} = -\frac{e^{-it(n)}}{2} + \frac{2+ne^{-it(n+2)}}{2(2+n)}.$$

$n \equiv 2 \mod 4 \implies G/\pi$ has PST from a to b

Since $n \equiv 2 \mod 4$, n = 4k + 2 = 2(2k + 1) for some $k \in \mathbb{Z}$. Choose $t = \frac{\pi}{2}$. Then,

$$e^{-it(n)} = \cos((2k+1)\pi) + i\sin((2k+1)\pi) = -1.$$

Also,

$$e^{-it(n+2)} = \cos((2(k+1))\pi) + i\sin((2(k+1))\pi) = 1.$$

Since $e^{-it(n)} = -1$ and $e^{-it(n+2)} = 1$,

$$|-\frac{e^{-it(n)}}{2}+\frac{2+ne^{-it(n+2)}}{2(2+n)}|=|-\frac{-1}{2}+\frac{2+n}{2(2+n)}|=1.$$

伺 と く き と く き とう

Since G/π has PST from *a* to *b*, for some time $t \in \mathbb{R}$,

$$\left|\frac{1}{2+n} - \frac{e^{-it(n)}}{2} + \frac{ne^{-it(n+2)}}{2(2+n)}\right| = 1$$

Observe that $rac{1}{2+n}=rac{1}{2+n}e^{i(2\pi)k}$ for some $k\in\mathbb{Z}.$ Then,

$$|\frac{1}{2+n}e^{i(2\pi)k} + \frac{e^{i(-(nt+\pi))}}{2} + \frac{ne^{i(-t(n+2))}}{2(2+n)}| = 1.$$

ヨト イヨト イヨト

Since $\{\frac{1}{2+n}, \frac{1}{2}, \frac{n}{2(2+n)}\}$ is a positive set of real numbers such that

$$\frac{1}{2+n} + \frac{1}{2} + \frac{n}{2(2+n)} = 1$$

and $\{(2\pi)k, -(nt + \pi), -t(n + 2)\}$ is a set of real numbers such that

$$|\frac{1}{2+n}e^{i(2\pi)k} + \frac{e^{i(-(nt+\pi))}}{2} + \frac{ne^{i(-t(n+2))}}{2(2+n)}| = 1,$$

there exists $\alpha \in \mathbb{R}$ such that

$$\alpha = (2\pi)k = -(nt + \pi) = -t(n+2).$$

Then,

$$\pi = 2t \implies 2(2t)k = -t(n+2) \implies n = -(4k+2).$$

・ロト ・回ト ・ヨト

Hence, $n \equiv 2 \mod 4$.

Theorem. Assume G is a hypercube besides K2, and H is an arbitrary graph on n vertices where n is a multiple of 4. Then the join G + H will preserve the Laplacian PST on G with equal periodicity.

• What types of graph operations may we use on *G* and preserve its PST?

- What types of graph operations may we use on *G* and preserve its PST?
- Can we invent new graph operations or generalize existing graph operations to help answer this question?

- What types of graph operations may we use on *G* and preserve its PST?
- Can we invent new graph operations or generalize existing graph operations to help answer this question?
- When we experiment with the type of PST which occurs (Laplacian vs. Adjacency), will our results change?

- The G-Join, $G[G_1, G_2, \ldots, G_m]$
- O The Weak product
- The Strong product
- The Lexicographic product

Figure: $C_3[P_2, P_2, P_2,]$

イロト イヨト イヨト イヨト

- The regular laplacian, L(G) = A D [Join]
- **②** The signless laplacian, L(G) = A + D [Line Graphs]
- The normalized laplacian, $L(G) = D^{-1/2}(A D)D^{-1/2}$ [Weak/Strong/Lexicographic Product]

Figure: The Line Graph

There is a relationship between the quantum walk on the Line Graph and the quantum walk on the original graph.

- Dr. Tamon
- Or. Foisy
- Olarkson, SUNY Potsdam
- The NSF