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Abstract

We present explicit quantum channels with strictly sub-additive minimum output Rényi
entropy for all p > 1, improving upon prior constructions which handled p > 2. Our exam-
ple is provided by explicit constructions of linear subspaces with high geometric measure of
entanglement. This construction applies in both the bipartite and multipartite settings. As fur-
ther applications, we use our construction to find entanglement witnesses with many highly
negative eigenvalues, and to construct entangled mixed states that remain entangled after per-
turbation.

1 Introduction

Often, it is easier to prove that a randomly chosen object satisfies a given property than to ex-
hibit a single, explicit object that satisfies that property. This is often referred to as the hay-in-a-
haystack problem, and has appeared in fields as diverse as number theory [Khi97], algebraic geom-
etry [LM25], circuit complexity [FGHK16], and coding theory [TS17]. In this paper, we address a
hay-in-a-haystack problem for an additivity problem in quantum information theory.

As observed by Hayden and Winter for p > 1 [HWO08], and by Hastings for p = 1 [Has09] there
exist randomized constructions of quantum channels ® and ¥ for which the minimum output
Rényi p-entropy is strictly sub-additive, i.e.

Hmin,p(q) &® ‘P) < Hmin,p(q)> + Hmin,p (T)

Derandomizing Hastings” construction is a major open problem, in part due to its equivalence to
several other channel capacity problems such as superadditivity of the Holevo capacity [Sho04].
Despite considerable efforts across more than 15 years since these randomized constructions came
to light, all of the known explicit constructions only handle p > 2 [GHP10, BC18, S524] or p close
to (or equal to) zero [CHL'08]. In this work, we give explicit constructions of quantum channels
with strictly subadditive minimum output Rényi entropy for all p > 1.
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By associating a quantum channel ® : End(#in) — End(# 4) with the image U/ of the isometry
U : Hin — Ha ® Hp appearing in its Stinespring representation, it is equivalent to exhibit linear
subspacesU C Hs ® Hpand V C H 4 @ Hp for which

Hmin,p (U &® V) < Hmin,p (Z/{) + Hmin,p(v)-

See e.g. [Hay07, GHP10]. Here, Hn » () denotes the minimum Rényi p-entropy of the squared
Schmidt coefficients of any unit vector in I/, and we view U ® V as a subspace of the bipartite
space (Ha ®@ Ha) @ (Hp @ Hp). We let Hyin(U) := Hmin (U). Our main result is the following:

Theorem 1.1. For any p > 1, there is an explicit subspace U C C" ® C" for which Hunp(U @ U) <
2Humin,p (U), where n can be taken as n = 20((p=1)") s p — 1+,

Here, O suppresses a factor of —log(p — 1). For example, when p = 2 we show that n = 28
suffices. In this case, dim (/) = 574. Translating to quantum channels, this construction yields an
explicit quantum channel ® : End(C**) — End(C?®) such that Hpin2(®%?) < 2Hmin2(P). See
Remark 2.5 for a loosely optimized table for particular values of p.

To prove this result, we employ a common reduction to the problem of exhibiting subspaces
with high geometric measure of entanglement [Hay07, GHP10, BC18]. For a subspace &/ C C" ®
< ®CM'nowe let

EU):=1- |¢r§1€agni<¢1 ® - QP |y |1 @ - @ Pm)

be the geometric measure of entanglement of U. Here and throughout, I1;; denotes the (orthogonal)
projection to U, | 1) denotes a unit vector, and ¢ denotes a (not necessarily normalized) vector. We
construct subspaces of high geometric measure of entanglement in both the bipartite and multi-
partite settings (although the bipartite setting is all that is needed for the subadditivity problem).
We say a subspace U is entangled if it contains no product states, i.e. E(U/) > 0.

Several randomized constructions of subspaces with high min-entropy [HLWO06, Has09, BH10,
FKM10, FK10, ASW11, BCN12, ASY14] or high geometric measure of entanglement [Har13b,
BESV24] have appeared in the literature. However, these random techniques provide little infor-
mation on how to find explicit constructions. To quote [BC18]: “...there is a need for a systematic
development of non-random examples of highly entangled subspaces.”

Focusing for simplicity on the case n := n; = --- = n,, we obtain the following. It is
well-known that the maximum dimension of an entangled subspace is n™ — m(n — 1) — 1 [Par04,
Har13a].

Theorem 1.2. Let H = (C")®™.

1. There is an explicit entangled subspace U C H of maximal dimension n™ —m(n — 1) — 1 for which
EU) > m~(=1m,

2. Forany 0 < e < 1, there is an explicit subspace U C H for which dim(U) = (1 —o(1))(1 — e)n™
and E(U) > em~"™. In the special case when ¢ = ( di’fd)_l for some positive integer d, this bound

can be strengthened to E(U) > .

Here and throughout, o(1) denotes a function that approaches zero in the limit # — oo when
all other parameters are fixed. Part 1 of this theorem addresses Question 1 in [HLWO06]. Part 2 of
this theorem implies Theorem 1.1, using the well-known bounds Hmin, () > ﬁ log(E(U)? +



(1—E(U))?) and Hyinp(U @U) < % log [dngu) } , along with a careful analysis of the 0(1) term
appearing in the dimension of I (for our construction, i = U). See Section 2.

Entangled subspaces are also useful for certifying entanglement of mixed quantum states via
the range criterion [Hor97, BDM"99] and constructing entanglement witnesses [ATL11, CS14]. In
Section 4 we illustrate these applications of our construction. In particular, we construct entangled
mixed states that remain entangled after perturbation, and we construct entanglement witnesses

with many, highly negative eigenvalues.

1.1 Construction overview

We now give a high-level overview of our construction. For simplicity, we focus on the bipartite
setting m = 2 with ny = ny = n. For a collection of non-zero scalars C = (Ci,j):'l]':y let

Z/{C = {1,b ceC'"C": Z Ci,jllji,]' =0 forall k=2,3,.. .,271}.
i+j=k

First observe that U is an entangled subspace: Suppose toward contradiction that |¢) :=
|¢1) ® |¢2) is a product unit vector in Uc. Let a1, ap € [n] be the smallest indices for which ¢; ,, # 0
and ¢, 7 O, respectively, and let k = a3 + a. Then Y i Cijpij = CoprPrPre, 7 0, @
contradiction.

Note also that dim(Uc) = (n — 1)?, which is the maximum dimension of an entangled sub-
space [Par04] (see also [Har13a, Definition 11.2]). One can verify that the antisymmetric subspace
used in [GHP10] as well as the constructions of entangled subspaces used in [CMWO08] are exam-
ples of subspaces of the form Uc.

In this work, we exhibit a particular choice of C for which E(Uc) is bounded away from zero.
For example, we prove that the subspace

n—1 1/2 n—1 1/2
U:= {1,01 Z <i—1> <._1> ¢;; =0 forall k=2,---,2n}g(cn)®2 (1)

ij€ln] J
i+j=k

satisfies E(U) > 27212,

Our choice of coefficients is tailored so that we can invoke a result of [BBEM90] on symmetric
projections. The symmetric subspace S(C*) C (C?)®? is the subspace of tensors invariant under all
permutations of the d subsystems. It is a standard fact that the projection onto S?(C*) is given by
I, := % Yres, Ur, where Uy is the unitary that permutes subsystems according to the permuta-
tion g, i.e. UU|i1 ce ld> = |i071(1) s Z.U71(d)>.

Theorem 1.3 ((BBEM90]). For any unit vectors |) € S¥(C?), |¢) € S*(C?), it holds that

24\ 12
Mot e lonl = (%) @
Weleta = 2and d = n — 1 so that H, := S"!(C?) is n-dimensional. As an immediate
consequence of this theorem, U := ker(I1,,,) is an entangled subspace of the bipartite space

-1

Hp @ Hp, and E(U) > (Zn”:lz) > 2721%2 Tt turns out that U is precisely the subspace defined



in (1) when the standard basis of C”" is identified with a standard (monomial) orthonormal basis
of H,.

We generalize this construction in several directions. First, we generalize to the case of poten-
tially unequal subsystem dimensions as well as to the multipartite setting. We also generalize this
construction to produce entangled subspaces for which E(U{) is higher, at the expense of dim(U/)
being smaller. To do this, we choose d smaller (and a larger) so that S(C?) is still (at least) n-
dimensional. This makes the lower bound in (2) higher, at the expense of ¢/ = ker(I1, ;) having
lower dimension. In coordinates, the resulting subspaces are no longer of the form U/, but they
can still be described explicitly (see Section 3).

1.2 Related work

In this section we compare our work to previous constructions of highly entangled subspaces. We
consider explicit and randomized constructions separately.

1.2.1 Explicit constructions

Many constructions of highly entangled subspaces have been presented in the literature. An
entangled subspace of maximum dimension was presented by Bhat [Bha(06]. Later, maximum-
dimensional subspaces avoiding the set of states of low Schmidt rank were presented in [CMWO08].
The antisymmetric subspace is an entangled subspace, which was used in [GHP10] to construct
quantum channels exhibiting subadditivity for p > 2. We note that our subspace U is precisely
the antisymmetric subspace of C* ® C* when d = 1. Further examples were recently presented
in [SS24].

Explicit constructions of highly entangled subspaces were also presented in [BC18] in the bi-
partite setting using the representation theory of free orthogonal quantum groups. Various prop-
erties of an associated class of quantum channels are analyzed in [BCLY20], along with a more gen-
eral class of channels they call Temperley-Lieb channels. In more details, the subspace they construct
is an irreducible subrepresentation of the tensor product of two representations of free orthogonal
quantum groups. A similar idea is also used to construct entangled subspaces in [AN13, AN14]
using representations of SU(2), although they only prove bounds on the entropy in very special
cases, such as when one of the spaces has dimension 2 (see [AN13, Section 2.4] and [BC18, Remark
6]).

We now compare in detail our construction to the one presented in [BC18]. For simplicity, we
focus on the case n; = ny = n. In effect, the authors of [BC18] endeavour to construct a subspace
U of dimension ¢ for which the quantity

L Hmin(u)
pU) = log(n?/¢)

is as large as possible (see [BC18, Equation 1]). The authors construct a subspace for which E(U/) >
1— (:5)/2 = 0(1). From here, it follows that

Hmin(U) > —log(1 —E(U))

1 7’12
> ) —
= 210g( / ) 0(1)’

which implies the bound u (i) > 3 — o(1). By comparison, our construction applies to both the
bipartite and multipartite settings, and in the bipartite setting we produce subspaces with u (i)
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arbitrarily close to 1. Indeed, when ¢ = (2; )71 our construction achieves Hpin(U) > —log(1 —¢)
with £/n% = (1 —0(1))(1 — &), so by increasing d, u(U) can be brought arbitrarily close to 1.

1.2.2 Randomized constructions

Randomized constructions of subspaces of high min-p-entropy were given for all p > 1in [HWO08].
In particular, they gave a randomized construction of a subspace V C C" ® C" for which

2Hmin,p(v) - Hmin,p(v ® V) = 10g(”) - O(1>

By contrast, our subspace U/ can achieve at most a constant gap because it contains elements of
Schmidt rank 2 (see Remark 3.14), hence Hyin,p(U) < 1.

Relatedly, there have been several randomized constructions of subspaces with high min-
entropy Hmin(U) [HLWO06, Has09, BH10, FKM10, FK10, ASW11]. Hastings [Has09] used such a
randomized construction to exhibit an explicit subspace V C C" ® C™ for which

Hmin(V ® V) < 2Hmin(V).

The works [BH10, FKM10, FK10, ASW11] give alternate proofs of Hastings” result. A common
approach is to construct a random subspace ¥V C C" ® C™ with n, = an? and dim (i) = Bny (for
some constants «, f) such that Hpyin(V) > log(n1) — O(1/n1). The desired inequality then holds
for n; > 0 by the bound

Hmin(V®V) < (1 - dim(V)

) tog(? 1) + h( T
172 172
<2(1- Fytog(m) + ()

logn
= 2log(ny1) — 0(78 b,
ny
where h(x) := —xlogx — (1 — x)log(1 — x) is the binary entropy. The first inequality can be

found in [FK10, Theorem 5], and holds whenever dim (i )ny > n; (see also [Has09, Equation 10]
and [BH10, Lemma B.1]). While it is still possible that our subspace U/ exhibits strict subadditivity
of MOE, it would require a different proof technique since our ¢ contains elements of Schmidt
rank 2 (see Remark 3.14), and hence Hpin (U) < 1.

See also [NS22] for partial progress on derandomizing Hastings” example using unitary de-
signs.

Randomized constructions of subspaces of high geometric measure of entanglement are given
in [Har13b]. For simplicity we focus on the case m = 2, n; = np = n. The more general setting can
be analyzed similarly. In particular, the following randomized construction is given in [Har13b]:

Proposition 1.4 (Proposition 11 in [Har13b]). Let Y C C" ® C" be a Haar-random subspace of dimen-
sion £ = n? — 2(n — 1) — x for some positive integer x. Then

Pr(E(U) < n 22y <p",

We now compare the bound on E(U/) obtained by this randomized construction to the one
obtained by our explicit construction. We consider two examples £ = (n — 1)? (the largest possible)
and ¢ = (1 —0(1))(1 — &)n?. We find that our explicit construction outperforms the randomized
one in both cases:



* When ¢ = (n — 1)2, the randomized construction obtains E(U/) > n~2"~2. By comparison,
our explicit construction obtains the better bound E (i) > 2722,

e When /¢ = (1 —0(1))(1 — &)n?, the randomized construction obtains

EU) > n—Zn/(en2—2n+2+0(1)(1—e)n2)—2.

Note that this bound is less than 772 for n > 0. By comparison, our explicit construction
obtains a constant bound E(U) > ¢/4 (or E(U) > ¢ when ¢ = (Zf )_1 for some d). We note
that the construction of [BC18] also achieves a constant bound of E(U/) > 1 — /1 —¢.

Randomized constructions of highly entangled subspaces are also presented in [BESV24] over
the real numbers. In particular, they construct a subspace of dimension dim(/) = cn? for a fixed
constant ¢, with E(U) depending inverse-polynomially in 7. See [BESV24, Theorem 7.1] for a more
general statement, which holds for other types of entanglement as well as in the smoothed analysis
setting.

2 The construction

In this section we prove Theorem 1.1. Our starting point is the following, which is essentially just
a rephrasing of Theorem 1.3.

Theorem 2.1. Let U = S*(C*)+ C S9(C*) ® S¥(C?), where S%(C*) ® S¥(C?) is regarded as a bipartite
Hilbert space with local Hilbert spaces Ha = Hp = S*(C*). Then U = U and E(U) > (25)_

Proof. Ttis clear that i = U because S?¢(C*) has a real basis. Furthermore,

EU)=  min (11— [{¢|¢r @2)[?)
ly)eu
|p1),|d2)€5%(C?)

= min [Tl @ ¢2) |
g1 lgnresi@ry

= ()
where the last line follows from Theorem 1.3. This completes the proof. O
In fact, by [BFM96, Theorem 3], the inequality (2) appearing in Theorem 1.3 is sharp, and hence
E@) =)
2.1 Rényi entropy bounds

For a unit vector |¢) € H ® Hp, and a constant p > 1, let

log(}_AY)

Hy(y) = 1—p
be the Rényi p-entropy of i, where the logarithm is taken base-2, and A; are the squared Schmidt
coefficients of |¢). For a subspace Y C Ha ® Hp, define the min-p-entropy Huyinp(U) to be the
minimum Rényi p-entropy of any unit vector in {/. The following lemma is well-known, see
e.g. [Hay07, Equation 26], [GHP10, Lemma 1], or [SS524, Lemmas 2 and 3]. We prove it here for
completeness.



Lemma 2.2. If Ul C Hp @ Hp is a subspace, then U QU C (Ha @ Ha) @ (Hp ® Hp) satisfies

B p dim(U)
. < '
Hinin,p (U ©U) < 1—p log dim(H4) dim(Hp)

In the statement of the lemma, we view U ® U as a subspace of bipartite space according to the
bipartition (Ha ® Ha) ® (Hp ® Hpr).
We also require the following lower bound on Hmin,,(U). This bound can be proven easily

using Schur-concavity of the Rényi p-entropy. See also [SS24, Lemma 4]. We prove it here because
it is slightly less standard than the above upper bound.

Lemma 2.3. If dim(H ), dim(Hg) > 2, U C Hx @ Hp is a subspace, and ¢ satisfies E(U) > € > 0,
then

1
Huinp(U) > —p log(ef + (1 —¢)P).
Proof. Let n = min{dim(#4),dim(Hpg)}, let ¢ € U be any unit vector, and let Ay > --- > A, be
the squared Schmidt coefficients of . Then A1 <1 —¢,s0 (1 —¢,¢,0,...,0) majorizes (Aq,...,Ay).
By Schur-concavity of the Renyi entropy,

Hy(p) > Hy(1 - 6,60,...,0) = - 1 | log(e" + (1—2)").

This completes the proof. O

2.2 Proof of Theorem 1.1

Theorem 2.4 (Theorem 1.1 in more details). For any p > 1, there exists a choice of a, d for which the
subspace U = U = S (C*)+ C S¥(C") ® S4(C") satisfies Hminp(U @ U) < 2Hmin »(U). Furthermore,
under this choice it holds that n := dim(54(C*)) = 20(~(p=1)""log(p-1)),

Proof. By the above bounds, it suffices to verify that

p dim(U)
-7 log { 2 <2

P —_ )P
1_plog(e +(1—¢)P),

for some ¢ satisfying E(U/) > & > 0. Equivalently, we need to show that

dim (i)
2

> (ef + (1 —¢)P)?/P. 3)

By Theorem 2.1, E(U) > ¢(d) := (Zj)_l. Note that dim (&) = n? — (“*3971). Hence

dlm(U) B (a+%gfl) B d—1 d
le _1_(11+Zl)2_1_8(d)g 1+ﬂ7—|—l ’

which approaches 1 — €(d) as a — 0. It is clear that for d large enough, it holds that
1—e(d) > (e(d)P + (1 —e(d))")*/7.

Hence, for any fixed p > 1 there exists a choice of a and d for which strict subadditivity holds.
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We now find a particular choice of a = a(p) and d = d(p) for which strict subadditivity holds.
Lete = ¢(d), and let

d= [10}, a = 5.
p—1

Note that

d—1 d
H<1+d-) = <1+d> <o/ = s,
i a-+1 a

where the inequality follows from (1 4 x) < ¢* for any real number x. So it suffices to show that
1—¢eet® > (e! 4 (1 —¢€)P)?/P. (4)

When p > 11 we have d = 1 and this inequality is easily verified. Assume from now on that
p <11,s0d >2,and hence 0 < & < ¢.

First we factor (1 —¢)?:

&+ (1-ef = (1-o) (1+ (1;)’7).

Letu = (ﬁ)p. Since ¢ < %we have £ < %,henceO < u < 1. Then
(" + (1 -2))" = (1= )1+ )7,
Because p > 1wehave2/p < 2,and since1 +u > 1,
1+uw?P < (14+u)?=1+2u+u><1+3u (0O<u<1).

Thus
(e +(1— s)”)z/p < (1—e)?(1+3u) = (1—2¢)*+3(1—¢)%u

Now
€

(1—8)%[:(1—5)2(1_8

Since p < 11, we have 2 — p > —9, hence (1 —¢)?> 7 < (1 —¢)~? < (6/5)° < 6. Therefore

)p —eP(1—¢)>P.

3eP(1—¢e)* P < 18¢,

and hence )
(& + (1 —e)P) " < (1 — )2+ 18" =1 — 26 + &> + 18¢P.

So (4) follows if we show

(2 —e/%)e > €2 + 18¢P. (5)
Dividing by ¢, it suffices to prove
2—e5 > e+ 18e L, (6)
Now,
o 5
Spil < S% < (2d + 1) d 5

<2<
40 =410 < 3p0



In the second inequality we used (Zj ) > %, and in the second inequality we used the fact that
the function x + (2x + 1)!/* is decreasing for x > 2 (which in turn can be verified by showing
that the logarithm x — w is decreasing for x > 2). Hence,

3
18Pt < e+ —.
e+ loe €+ 50
From here, the strict inequality (6) follows easily since ¢ < 1/2. Note that for this construction we
haven = ("1 < (a+d-1)7 < 20(=(p=1) "og(p=1)) This completes the proof. O
Remark 2.5. For particular values of p we can optimize d and a so that n = (”+Z_1) is as small
as possible subject to the inequality (3) holding. We record a loosely optimized table of sufficient

values for d and 4, along with n = (“+Z_1) and dim(U) = n? — (“+§§_1), for a few values of p:

H p d n dim(U) H
2 2 7 28 574
15 2 13 91 6461
125 3 44 15,180 ~2.16-108
1125 5 240 =~6.92-10° =~4.76-107
1.0625 10 889 =~ 894 -10%2 ~7.99-10%

3 Constructing entangled subspaces in other parameter regimes

In this section we explicitly construct subspaces of H = C" ® --- @ C" with high geometric
measure of entanglement. Let S = [n1] x - - - X [n,]. For a tuple of coefficients C = (Cq)qes, let

L{C::{IIJEH: ZCwlpa:O for all k},

aeS
|ee|=k

where |a| := a1 + - - - + &y, and k ranges over {m,m+1,...,n1 + - - + 1y }.

Proposition 3.1. If C, # 0 forall « € S, then Uc is a completely entangled subspace (i.e. it contains no
product states) of maximum dimension.

Proof. Let|¢p) = |¢1 ® - - - @ ¢ ) be a product state. For each i € [m] let a; be the smallest index for
which ¢;,, # 0, and let k = }_; a;. Then

E Ca (P‘X — CD‘¢1AX1 tt ¢m,o¢m # 0/

|| =k

so ¢ ¢ Uc. This shows that Uc is completely entangled. Furthermore, dim(Uc) = ny-- -1y —
Y"1 (n;) +m —1, which is the maximum dimension of a completely entangled subspace by [Par04]
(see also [Har13a, Definition 11.2]). O

More generally, let P = (Py, ..., P;) be any ordered partition of S that respects the ordering of
each [n;] in the sense that if « € P, and v; < &; then (ay,..., &1, 7i, &i41,...,&n) € P, for some
r < q.LetUc p be the set of ¢ for which } . p Cyps = 0 for all i. Then Uc p is completely entangled
(but may not be of maximum dimension).

We exhibit choices of C and P for which E(Uc p) is high. For convenience, we summarize our
main results in the case ny = - - - = ny, = n:



Theorem 3.2. Let H = (C")®™.

1. There is an explicit choice of C € C° for which E(Uc) > m~ """ (and by construction, dim(Uc)
is maximal among all completely entangled subspaces).

2. Forany 0 < & < 1, there is an explicit choice of C and P for which dim(Ucp) = (1 —o(1))(1 —

e)n™ and E(Uc,p) > em™™. In the special case when e = (™))"

bound can be strengthened to E(Uc p) > «.

for some positive integer d, this

3.1 Choosing C and P for the construction

We now explain how we choose C and P so that Uc p has high geometric measure of entanglement.
We first choose positive integers a, d; with n; < (‘H'Z{ _1), and view C" as a subspace of S (C") by

sending the standard basis of C" to the the first n; elements of the orthonormal basis

di\'? | .
{!“i> = (al> Hga ey (|17 @+ @ |a)®%e) s oy € {0,1,...,d;}", o] = di}

1

for 5% (C"), where I, (co) is the orthogonal projection onto S4(C*). (Alternatively, any isometric
embedding C" — S§%(C) will do.) Letd := (dy,...,dn), and let 7, 4 := S (C*) @ - - - ® S (C*).

After making the choice, we let I1, 4 be the orthogonal projection onto the symmetric subspace
Shitetdm (C1) C Js4, and define

L{a,d = ker(l—[a,d) - u7u,d-

Then U, 4 is a completely entangled subspace of H (after intersecting with H if the inequality n; <
(Hgfl) is strict for some 7). This can be verified from the following remark, or from Corollary 3.7

below.

Remark 3.3 (Writing U/, 4 in coordinates). In coordinates, we can write U, 4 as a subspace of the
form U p as follows. For each & = (a1,..., &) € Z”;Om with (1,...,1)a = d we let

1/2 1/2
() (8)”

Upa = {l[) : Z Capy =0 forall [3} C Jud, (7)
wEZTY"

(1,...1)a=d
1,..1)aT=8

Then

where B = (B1,...,Ba) ranges over {B € Z%, : |B| = |d|}. One can verify that the expressions (7)
and U, g = ker(I1, 4) are equivalent by noting that |¢) € ker(I1,q) if and only if

(1@ @ (a| P alp) =0

for all B, and
B op Elw
(A @@ {(a]*P),q = 8 ) Co({a1] @ - @ (am]),
a=(0,...000) EZLY"
(1,..,1)a=d
(1,...1)aT=g

which is a tedious but elementary computation.
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Ifdy = =dy =dwelet J,; = Jpa and U, 5 = U, 4. Let us now restate Theorem 3.2 in
more details.

Theorem 3.4. Let H = (C")®™, and for a,d with n < (”+Z_1) let U, 3 C J,q be defined as above.

1. Ifa =2,d=n—1, then U,; C H is completely entangled of maximum dimension, and E(U) >
m—(n=1)m

2. Forany 0 < e < 1, there is a choice of d = d(e) (given by (8)) for which letting a = [V/d! - n] gives
dim(U, 4) = (1 —0(1))(1 —e)n™ and E(U, 4) > em~"™. In the special case when e = (d,’f_d:d,)ilfor

some positive integer d’, one can choose d = d’ and this bound can be strengthened to E (Z/Ia;d > e

Example 3.5 (Bipartite setting). In the bipartite setting,

n—1\"?/n—1\2
u21n1:{1p; Y. <i—1) <._1> ¢ij =0 forall k:2,...,2n}Q(C”)®2.

ijeln J
itj=k

By Theorem 3.4, U ,_1 is completely entangled of maximum dimension, and E(U/) > 2722,

3.2 Analyzing the geometric measure of entanglement for the construction

In this section we prove Theorem 3.4, along with more general statements that handle the case
of potentially unequal subsystem dimensions. We carry over the definitions from the previous
section, including H = C" @ - - - @ C".

The starting point in our analysis is the following result of [BBEM90].

Theorem 3.6. If € S (C"), ¢ € S=(C*) and d = (dy,da), then

d +dy\ 712
Mool = (U5 %) " Illel

A one-page proof of this result can be found in [Zei94]. In these references, the result is stated
as a bound on the Bombieri norm of the product of homogeneous polynomials. One can translate

this to the above statement by identifying |a;) with the polynomial (i)l/2 x1' -+ - xp" and verifying
that this map is a linear isometry for which I, 4(¢ ® ¢) corresponds to the product of ¢ and ¢ as
polynomials.

Corollary 3.7. If ¢; € Sdi (CYfori=1,2,...,mandd = (dy,...,dp), then

di+dy+ - +dy
Mea($1@ 2@ @ )| > < ' i ) lallligpall - -~ llpmal-

Proof. We have

Taa(P1 @ P2 @ -+ @ ) || = [Tga (1 @ T, (4, a,) (P2 @ -+ @ i) |

di+---+d -1/2
= (M) Il M (@9 g
di+dy+ ot d\
S A B T T I T
7 7 m
completing the proof. O
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Theorem 3.8. Let a,dy, ..., dy, { be positive integers. If n; < (’H;‘ﬁl_l) and
(< ny--ny —dim(SHH i (C))

. . . -1
then there exists a subspace U C H of dimension { with E(U) > (dlildjj___ ;:nd"’) .

Proof. LetU = ker(T1,4) NH C H (recall that we view C" as a subspace of $%(C*)), which has di-

-1
mension at least 11y - - - 11, — dim(S417+4n(C%)). It remains to prove that E(U) > (dljldé:. ,;l::j'”) :
Note that

— 1 —_ o .. 2
E) = min (1—[plpr@--- @ m)l%)
i) eCi

>  min (1- Q- Q)|
> |1,b>€ker(1_[ﬂ,d)( (Yl ¢m) %)

|gi)esti(C)
= min [Tal¢r@-- @ n) |
|¢i) €5 (C)

(A d

o d1/d21"'ldm ’
where the second line follows from U C ker(I1,4) and C" C S%(C%). This completes the proof.

O
Corollary 3.9. There exists a subspace U C H of dimension
m
C=mny-ny—Y (n)+m—1
i=1
with EQ) > (1)
Note that the subspace U constructed in this corollary is entangled of maximum dimension.
Proof. Takea =2,d; =n; —1fori=1,2,...,m,and
C=ny-ny — <d1+d2+ a_+1dm+a > =nycc iy — ) (n) +m—1
i=1
in Theorem 3.8. O
Let us now look at the special case wheren; =ny = --- =n,, = n.
Corollary 3.10. There exists a subspace U C (C")*™ of dimension n™ — mn + m — 1 with E(U) >
—(n—1)m
m .
Proof. We take n; = np = --- = n,;, = n in Corollary 3.9. Then U is a subspace of the specified
-1

dimension, and E(U) > (nfln:z(ff}_)nfl) >~ (n=1)m, 0

We constructed entangled subspaces U of (C")®™ of maximal dimension for which E(U/) has
a lower bound that is exponentially small in 7. For subspaces of smaller dimension we can get
better bounds. For example, we can construct U of dimension (1 —0(1))(1 — &)n™ for which E(i)
is lower bounded by a constant independent of 7.

12



Proposition 3.11. Forany d € IN there exists a subspace U C (C")“™ of dimension

md -1 me \ "
> m_ m o
t=zmn " <d,d,...,d> <1 W)

for which E(U) > (d,g‘_i.,d)il

In the statement of the proposition, e is Euler’s constant.

Proof. In Theorem 3.8 we will takedy =dy = --- =d,, =dand ny = ny = --- = n,, = n. We take
a=[vdl n] <Vd n+1,so that

d
d+a-—1 _ d+a-—1 >a7>n.
a—1 d —d -

di+dy+---+dpy+a—-1\ (md+a—1 <(md—|—a—1)’”d (md + /d!-n)md
a—1 N md - (md)! - (md)! N

e PP B (T e O I (R4

This completes the proof. O

Now we have

Theorem 3.12. Let 0 < ¢ < 1 be arbitrary but fixed. Then there exists a subspace U C (C")®™ of

dimension (1 —o(1))(1 — e)n™ with E(U) > em™™. In the special case that ¢ = (d,;f_’id)fl for some
d € IN, this bound can be strengthened to E(U) > e.

Proof. Choose d such that

<d,d76.l.,d> s <(d —1), (giidﬁf.).,u - 1)) - ®)

-----

md (md)(md —1)---(md —m—+1) "
< < .
1 (d,d,...,d>£< a =

From Proposition 3.11 and (8) it follows that

~1
EU) > (d dmd d) >em ™.

In the special case ( dlé”fi' 2)&¢ = 1 this bound can be strengthened to E(i/) > ¢, as claimed. The
dimension of { is at least

m—n" md B 14+ 1€ Md>nm—enm 14+ 1€ "
" dd,....d n n
> (1—0(1))(1—¢)n™.

This completes the proof. O
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The following theorem gives a general tradeoff between dim(¢/) and E(U/). Here, In(-) denotes
the logarithm base e.

Theorem 3.13. Let 0 < a < m be arbitrary but fixed. There exists a sequence of subspaces U, C (C")®™,
n > 1 of dimension at least n™ — nfm(@) with E(U,) > n=2*, where

2aIn(m =t + em—"m/2%)

f(a) = m+ Inm
Proof. Note that
. In (d,ﬁ.,d)
lim —==2" — mlnm.
d—o0 d

Define d = d(n) = [BIn(n)], where B = 2a/(mInm). Then we have

In (d md(n) ) J ln( md(n)
. (m)d(n),d(n)) .. d(n) d(n)d(n),...d(n))
m Inn i Inn d(n) = pminm.

—1
lim inf LE(Un) > liminf d(n) dn)....A(n) = —Pmlnm = -2,
n—co  In(n) n—00 Inn

which proves that E(U,) > n~2*. Let c(n) = n™ — dim({,) be the codimension of U,,. From
md(n) - me \md(n)
< n" _—
em) < (d(n),d(n),...,d(n)) (1+ d<%)
it follows that

. Inc(n)
1
Tl n(n)

<m—Bminm+ BmIn(1+me'"VP) = m + pmIn(m ' 4! 71/F) =

2 ln(m—l +e- e—mln(m)/Z(x) - 2 ln(m_l + em—m/Z:x)
lnm lnm

This completes the proof. O

Remark 3.14. We remark that our subspace Uy 4, 4, := ST T%(C*)+ C S (C") ® $%(C") always
contains elements of Schmidt rank 2. Assume without loss of generality d; < dj, and define unit
vectors

e1:=|1)" € SH(CY)  fr:=2)% € $=(C)

dy

ey 1= ’2>d1 c Sdl (C{Z), f2 = <d
1

) 112y € st
Then I, 4 4,(e1 ® f1) and I1, 4 4,(e2 ® fo) are nonzero vectors in S 742(C?) that span a 1-
dimensional space, so there exists a non-zero scalar a for which e; ® f1 +we, ® fo € ker(Il, 4, 4,) =

U. This is a Schmidt rank 2 vector in ¢/. A straightforward calculation shows that one can take

d —-1/2
n = —(di) .
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4 Further applications

In this section we discuss further applications of our construction to produce entangled mixed
states that remain entangled after perturbation, and entanglement witnesses with many, highly
negative eigenvalues.

In the following, |- ||; denotes the trace norm and ||- ||« denotes the spectral norm.

Theorem 4.1 (Robustly entangled mixed states). Let H = (C")®™.

1. There is an explicit mixed state p on H of rank n™ —m(n — 1) — 1 such that for every Hermitian
operator H with trace norm | H |y < m~"=1"/2 the state e/ pe~'H is entangled.

2. Forany 0 < & < 1, there is an explicit mixed state p on H of rank (1 —0(1))(1 — e)n™ such that
e pe= is entangled for every Hermitian operator H with trace norm |H|; < Vem—". In the

-----

IH]l < Ve

Proof. This follows from [ZZZ724, Theorem 2] by taking p to be a state supported on one of the
subspaces specified by Theorem 1.2. O

Theorem 4.2 (Entanglement witnesses with many, highly negative eigenvalues). Let H = (C")®™.

1. There is an explicit entanglement witness H with ||H||e = 1 having n™ — m(n — 1) — 1 negative
eigenvalues, each of magnitude at least m~ (=™,

2. Forany 0 < & < 1 there is an explicit entanglement witness H with ||H|| = 1 having (1 —
0(1))(1 — e)n™ negative eigenvalues, each of magnitude at least em="™. In the particular case when

.....

Proof. This follows from e.g. [DJL24, Proposition 5.4] by taking H = 1 — ully;, where I1;; is the
projection onto one of the subspaces specified in Theorem 1.2 and u = (1 — E(U))~.. O
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