Algorithms and Uniqueness of Tensor Decompositions

Benjamin Lovitz

Northeastern University

UMass Boston Department of Mathematics

November 14, 2023

What is a matrix?

12	Ø	t	•		2	5		>		Β	\mathbf{r}			Þ		5		2 <		-	ť	17		6			2	- H	
- Q					ç	ç																-5:		7 <					
‡ う		8									Δ.					<u>£</u> _2		F57				5 72							
ワヌ	t			Σ<		R						53				<u>۲</u> ک						<u>प्र</u> +	B					トゴ	
ッシ	÷			8≣)						۰IJ						和り		8 3		15 U						78	
£5				*6		5						JŻ				- 4		SE :				3+6						*天	
1+		n,	69	$\Box 0$												<u>a</u> 5		「日本日			87	Syd				126	• ⊊ <	ΓZ	
ניק		6	ਨੁਵ	ΞI			÷				ti	5						- 67			*12	" BC				ŧ٩		€3	
う日		<	をす	nt k							Σ(<u>5</u> -			杰	4UE		>2	đ	₹ nu		コホン				23	‡Δ		
ヌ击		Ш	GH	64		击	11				8	Ð				1 81		1/8		86 £		₹6/		モタス		11	99	6‡	
56	Τ.	e	25			9			55							5曲2		4*		ā< Ζ		₹<4		tt18				<c< td=""><td></td></c<>	
5<				ΞV			đ		カき							<i>"</i> ∂₹	τ	EU⊒	Ŧ	6503	6F	ZAU		<u>9</u> *	2			ヨピ	
+八			υJ	E 1			দ		9 反	8V		ŧ			Δ	333	L Z	175		<61.	<5	372		<⊎⊐				R 4	
IJΔ			9日				112	tt	>e							ミハラ	2			八回大丰	EŦ			ミミラ			マナ		
BIJ			击天	5			Ŧ		52	C -						₹45		<u>क</u> =9	۲	D'TT4	62	±7=		RUD		£			
<u>ئة /</u>			9Z		E	17			9+	63	<	F				ZU+		ヌセン		リモをじ	<u> </u>	Cit		19			78		
			>2	Б	đ	; i				rtप						279		ERE		Strug			ŧ				5*		
				3	6	; =	J		в	64		₹	Ø			- 1 E	1.6	589	Ζ	至1		4-8		Ш			50		
+			4		4			Ø	击	< 3	Ø					‡ ⊒đ		+Ø	3	マーダ				9	Ģ				
ス			UC			7				23						CtE				1 3 70		F							
8			7୯		Ŀ	8			>	€"						৩, ম	Ģ	日代		-92					F		89		
*						*					ť					48	ē	サ击		<u>ভাবে</u>		C				ç	<u>ئ</u> ت>		
	"					E									P			65		ष∃ट			2			ゥ	6≡		
5			tç							Ŧ				击		7		< V		+212		<					<٦		
ħ			5ス											6						3"		111							
			8 乏		1											Fit				52		R					4		
			*3					4															ヮ						
			63		- 8			দ					P			25		7		王			IJ						

What is a matrix?

A matrix is an element of $\mathbb{F}^{d_{\chi}} \otimes \mathbb{F}^{d_{y}}$

$$\begin{bmatrix} 2 & 4 \\ 6 & 12 \end{bmatrix} \in \mathbb{F}^2 \otimes \mathbb{F}^2$$

A rank-one matrix is a matrix of the form
$$x \otimes y = xy^T = (x_i y_j)_{(i,j)}$$

What is a matrix?

A matrix is an element of
$$\mathbb{F}^{d_x} \otimes \mathbb{F}^{d_y}$$
 $\begin{bmatrix} 2 & 4 \\ 6 & 12 \end{bmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} (2 \ 4)$

A rank-one matrix is a matrix of the form $x \otimes y = xy^T = (x_i y_j)_{(i,j)}$

A matrix is an element of $\mathbb{F}^{d_x} \otimes \mathbb{F}^{d_y}$ $\begin{bmatrix} 2 & 4 \\ 6 & 12 \end{bmatrix} = \binom{1}{3}(2 \ 4)$

A rank-one matrix is a matrix of the form $x \otimes y = xy^T = (x_i y_j)_{(i,j)}$

What is a matrix tensor?

What is a matrix tensor?

A matrix tensor is an element of $\mathbb{F}^{d_x} \otimes \mathbb{F}^{d_y} \otimes \mathbb{F}^{d_z}$

A product tensor is a tensor of the form $x \otimes y \otimes z = (x_i y_j z_k)_{(i,j,k)}$

What is a matrix tensor?

A matrix tensor is an element of $\mathbb{F}^{d_x} \otimes \mathbb{F}^{d_y} \otimes \mathbb{F}^{d_z}$

A product tensor is a tensor of the form $x \otimes y \otimes z = (x_i y_j z_k)_{(i,j,k)}$

Tensor decompositions

<u>Definition</u>: Let $n \in \mathbb{N}$ and $[n] \coloneqq \{1, ..., n\}$.

For
$$T \in \mathbb{F}^{d_x} \otimes \mathbb{F}^{d_y} \otimes \mathbb{F}^{d_z}$$
, an expression $T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in \mathbb{F}^{d_x} \otimes \mathbb{F}^{d_y} \otimes \mathbb{F}^{d_z}$

is called a decomposition of T into product tensors

rank(T) := smallest n

Uniqueness of tensor decompositions

<u>Definition</u>: Let $n \in \mathbb{N}$ and $[n] \coloneqq \{1, ..., n\}$.

A rank decomposition

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in \mathbb{F}^{d_x} \otimes \mathbb{F}^{d_y} \otimes \mathbb{F}^{d_z}$$

is called the unique (rank) decomposition of T if for any other decomposition

$$T = \sum_{a \in [n]} x'_a \otimes y'_a \otimes z'_a \in \mathbb{F}^{d_x} \otimes \mathbb{F}^{d_y} \otimes \mathbb{F}^{d_z}$$

there is a permutation $\sigma \in S_n$ such that $x_a \otimes y_a \otimes z_a = x'_{\sigma(a)} \otimes y'_{\sigma(a)} \otimes z'_{\sigma(a)}$ for all $a \in [n]$.

Application: Latent parameter learning

$\checkmark L$ is for *latent*

• Let A, B, C, L be finite random variables such that A, B, C are conditionally independent, i.e.

$$Pr(a, b, c|l) = Pr(a|l) Pr(b|l) Pr(c|l) \quad \text{for all } a, b, c, l.$$

- <u>Goal</u>: Given the probability vector Pr(A, B, C), determine Pr(A, B, C, L).
- Method:

$$Pr(A, B, C) = \sum_{l} Pr(l) Pr(A, B, C|l) = \sum_{l} Pr(l) Pr(A|l) \otimes Pr(B|l) \otimes Pr(C|l)$$

... If $Pr(A, B, C)$ has a unique decomposition, then we can recover $Pr(A, B, C, l)$,

 <u>Applications</u>: Learning mixtures of spherical gaussians, phylogenetic tree reconstruction, hidden Markov models, orbit retrieval, blind signal separation, document topic models, ...

Two goals

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in \mathbb{F}^{d_x} \otimes \mathbb{F}^{d_y} \otimes \mathbb{F}^{d_z} \quad (1)$$

1. <u>Algorithms</u>

[JLV 2023, published in FOCS]

Given a tensor $T \in \mathbb{F}^{d_x} \otimes \mathbb{F}^{d_y} \otimes \mathbb{F}^{d_z}$, find a rank decomposition (1).

2. <u>Uniqueness</u>

[LP 2023, published in FoM Sigma]

Given a rank decomposition (1), prove that it is the unique rank decomposition.

Two goals

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in \mathbb{F}^{d_x} \otimes \mathbb{F}^{d_y} \otimes \mathbb{F}^{d_z} \quad (1)$$

1. <u>Algorithms</u>

[JLV 2023, published in FOCS]

Given a tensor $T \in \mathbb{F}^{d_x} \otimes \mathbb{F}^{d_y} \otimes \mathbb{F}^{d_z}$, find a rank decomposition (1).

2. <u>Uniqueness</u>

[LP 2023, published in FoM Sigma]

Given a rank decomposition (1), prove that it is the unique rank decomposition.

Algorithm idea

<u>Tensor:</u> $T \in \mathbb{F}^d \otimes \mathbb{F}^d \otimes \mathbb{F}^k$

Decomposition: Sum of *R* product tensors

 $T = x_1 \otimes y_1 \otimes z_1 + x_2 \otimes y_2 \otimes z_2 + \dots + x_n \otimes y_n \otimes z_n$

<u>Idea</u>: If we view T as an $d^2 \times k$ matrix, then the image is in the span of the $x_i \bigotimes y_i$.

Algorithm idea

<u>Tensor:</u> $T \in \mathbb{F}^d \otimes \mathbb{F}^d \otimes \mathbb{F}^k$

Decomposition: Sum of *R* product tensors

 $T = x_1 \otimes y_1 \otimes z_1 + x_2 \otimes y_2 \otimes z_2 + \dots + x_n \otimes y_n \otimes z_n$

<u>Idea</u>: If we view T as an $d^2 \times k$ matrix, then the image is in the span of the $x_i \bigotimes y_i$.

• Finding rank-one matrices in $im(T) \leftrightarrow Finding tensor decompositions of T$

Algorithm idea

<u>Tensor:</u> $T \in \mathbb{F}^d \otimes \mathbb{F}^d \otimes \mathbb{F}^k$

Decomposition: Sum of *R* product tensors

 $T = x_1 \otimes y_1 \otimes z_1 + x_2 \otimes y_2 \otimes z_2 + \dots + x_n \otimes y_n \otimes z_n$

<u>Idea</u>: If we view T as an $d^2 \times k$ matrix, then the image is in the span of the $x_i \bigotimes y_i$.

- Finding rank-one matrices in $im(T) \leftrightarrow Finding tensor decompositions of T$
- Finding other types of matrices in $im(T) \leftrightarrow Finding$ other types of decompositions of T

(X, k)-decompositions

For $T \in \mathbb{F}^D \otimes \mathbb{F}^k$, $X \subseteq \mathbb{C}^D$,

an (X, k)-decomposition is an expression

$$T = \sum_{i=1}^n v_i \otimes z_i \in \mathbb{F}^D \otimes \mathbb{F}^k$$

where $v_1, \ldots, v_R \in X$

<u>Example</u>: When $X = X_1 = \{ \text{rank 1 matrices} \} \subseteq \mathbb{F}^d \otimes \mathbb{F}^d$, an (X, k)-decomposition is just a tensor decomposition.

Viewing *T* as a map $\mathbb{F}^k \to \mathbb{F}^D$, each $v_i \in T(\mathbb{F}^k) \cap X$, so computing $T(\mathbb{F}^k) \cap X \leftrightarrow (X, k)$ -decomposing *T*

<u>Theorem (informal) [JLV 2023]</u>: For many algebraic varieties X, we can recover low-rank (X, k)-decompositions efficiently.

Algebraic Varieties

Variety: common zeroes of a set of polynomials

$$X = \{ x \in \mathbb{F}^{D} : f_{1}(x) = \dots = f_{p}(x) = 0 \}$$

•
$$f_1, f_2, \dots, f_p$$
 cut out the variety X

Algebraic Varieties

Variety: common zeroes of a set of polynomials

$$X = \{x \in \mathbb{F}^D \colon f_1(x) = \dots = f_p(x) = 0\}$$

• f_1, f_2, \dots, f_p cut out the variety X

 $X \subseteq \mathbb{F}^{D}$ is a (conic) variety iff $v \in X \implies \forall \lambda \in \mathbb{F}, \lambda v \in X$

• Conic variety: f_1, f_2, \dots, f_p can be homogenous of same degree ℓ

Running example: rank-1 matrices $X_1 = \{u_1 \otimes u_2 \mid u_1 \in \mathbb{F}^{d_1}, u_2 \in \mathbb{F}^{d_2}\}$ $u_1 \otimes u_2 = u_1 u_2^T$ is vector outer product.

Running example: rank-1 matrices $X_1 = \{u_1 \otimes u_2 \mid u_1 \in \mathbb{F}^{d_1}, u_2 \in \mathbb{F}^{d_2}\}$ $u_1 \otimes u_2 = u_1 u_2^T$ is vector outer product.

• $X_1 \subset \mathbb{F}^{d_1 \times d_2}$ is a conic variety cut out by degree-2 polynomials

Running example: rank-1 matrices $X_1 = \{u_1 \otimes u_2 \mid u_1 \in \mathbb{F}^{d_1}, u_2 \in \mathbb{F}^{d_2}\}$ $u_1 \otimes u_2 = u_1 u_2^T$ is vector outer product.

• $X_1 \subset \mathbb{F}^{d_1 \times d_2}$ is a conic variety cut out by degree-2 polynomials

 $\begin{array}{ll} M \in X_1 \text{ iff} \\ \forall 1 \leq i_1 < j_1 \leq n_1, \\ \forall 1 \leq i_2 < j_2 \leq n_2, \end{array} & M_{i_1 j_1} M_{i_2 j_2} - M_{i_1 j_2} M_{i_2 j_1} = 0 \end{array}$

$$j_1$$
 j_2
 i_1 M
 i_2 M

det(2 x 2 submatrix) = 0

• X_1 cut out by $\binom{n_1}{2}\binom{n_2}{2}$ homogenous degree 2 polynomials

Algorithm for (X, k)-decompositions $\longrightarrow U$

Algorithm to compute $U \cap X$ for linear subspace $U = T(\mathbb{F}^k)$

<u>Problem</u>: Given some other basis $\{u_1, \dots, u_n\}$ of U, recover $\{v_1, \dots, v_n\}$ (up to scale).

<u>Example: Jennrich's Algorithm</u>: If $U' = \text{span} \{v_1^{\otimes \ell}, \dots, v_n^{\otimes \ell}\}$ with $\{v_1, \dots, v_n\}$ linearly independent, then $\{v_1^{\otimes \ell}, \dots, v_n^{\otimes \ell}\}$ can be recovered from any basis of U' in $D^{O(\ell)}$ -time.

<u>Problem</u>: Given some other basis $\{u_1, \dots, u_n\}$ of U, recover $\{v_1, \dots, v_n\}$ (up to scale).

Example: Jennrich's Algorithm: If $U' = \text{span} \{v_1^{\otimes \ell}, \dots, v_n^{\otimes \ell}\}$ with $\{v_1, \dots, v_n\}$ linearly independent, then $\{v_1^{\otimes \ell}, \dots, v_n^{\otimes \ell}\}$ can be recovered from any basis of U' in $D^{O(\ell)}$ -time.

Jennrich's Algorithm:

Pick
$$T_j \in U'$$
, $j = 1,2$ at random, view these as maps $T_j: (\mathbb{F}^D)^{\otimes \ell - 1} \to \mathbb{F}^D$
 $T_j = \sum_{i=1}^n \alpha_{j,i} v_i (v_i^t)^{\otimes \ell - 1}$ $T_j^{-1} = \sum_i \frac{1}{\alpha_{j,i}} (w_i)^{\otimes \ell - 1} w_i^t$ where $w_i^t v_{i'} = \delta_{i,i'}$
So $T_1 T_2^{-1} = \sum_i \frac{\alpha_{1,i}}{\alpha_{2,i}} v_i w_i^t$. E-vectors / E-values of $T_1 T_2^{-1}$ are v_i , $\frac{\alpha_{1,i}}{\alpha_{2,i}}$
Distinct for different i

<u>Problem</u>: Given some other basis $\{u_1, \dots, u_n\}$ of U, recover $\{v_1, \dots, v_n\}$ (up to scale).

<u>Example: Jennrich's Algorithm</u>: If $U' = \text{span} \{v_1^{\otimes \ell}, \dots, v_n^{\otimes \ell}\}$ with $\{v_1, \dots, v_n\}$ linearly independent, then $\{v_1^{\otimes \ell}, \dots, v_n^{\otimes \ell}\}$ can be recovered from any basis of U' in $D^{O(\ell)}$ -time.

Lifted Jennrich's Algorithm [JLV 23, DLCC 07]: Run Jennrich on $U' = U^{\otimes \ell} \cap X^{\ell}$, where $X^{\ell} = \operatorname{span}\{v^{\otimes \ell} : v \in X\}$. $v^{\otimes \ell} \in U' \iff v \in U \cap X$

<u>Problem</u>: Given some other basis $\{u_1, \dots, u_n\}$ of U, recover $\{v_1, \dots, v_n\}$ (up to scale).

<u>Example: Jennrich's Algorithm:</u> If $U' = \text{span} \{v_1^{\otimes \ell}, \dots, v_n^{\otimes \ell}\}$ with $\{v_1, \dots, v_n\}$ linearly independent, then $\{v_1^{\otimes \ell}, \dots, v_n^{\otimes \ell}\}$ can be recovered from any basis of U' in $D^{O(\ell)}$ -time.

Lifted Jennrich's Algorithm [JLV 23, DLCC 07]: Run Jennrich on $U' = U^{\otimes \ell} \cap X^{\ell}$, where $X^{\ell} = \operatorname{span}\{v^{\otimes \ell} : v \in X\}$. $v^{\otimes \ell} \in U' \iff v \in U \cap X$

<u>Theorem (informal) [JLV 23]</u>: Lifted Jennrich's algorithm works already for small ℓ , provided that $R = \dim(U)$ is not too large.

<u>Problem</u>: Given some other basis $\{u_1, \dots, u_n\}$ of U, recover $\{v_1, \dots, v_n\}$ (up to scale).

Example: Jennrich's Algorithm: If $U' = \text{span} \{v_1^{\otimes \ell}, \dots, v_n^{\otimes \ell}\}$ with $\{v_1, \dots, v_n\}$ linearly independent, then $\{v_1^{\otimes \ell}, \dots, v_n^{\otimes \ell}\}$ can be recovered from any basis of U' in $D^{O(\ell)}$ -time.

Lifted Jennrich's Algorithm [JLV 23, DLCC 07]: Run Jennrich on $U' = U^{\otimes \ell} \cap X^{\ell}$, where $X^{\ell} = \operatorname{span}\{v^{\otimes \ell} : v \in X\}$. $v^{\otimes \ell} \in U' \iff v \in U \cap X$

<u>Theorem (informal) [JLV 23]</u>: Lifted Jennrich's algorithm works already for small ℓ , provided that $R = \dim(U)$ is not too large.

<u>Example [JLV 23]</u>: If $U \subseteq \mathbb{F}^d \otimes \mathbb{F}^d$ is spanned by $n \leq \frac{1}{4}(d-1)^2$ generic product tensors, then these can be recovered from any basis of U in poly(d)-time.

<u>Corollary [JLV 23]</u>: A generic tensor $T \in \mathbb{F}^d \otimes \mathbb{F}^d \otimes \mathbb{F}^{d^2}$ with $\operatorname{rank}(T) \leq \frac{1}{4}(d-1)^2$

has a unique rank decomposition, that can be recovered in poly(d)-time by applying lifted Jennrich to im(T).

- Maximum possible rank up to constant
- Quadratic improvement over Jennrich's algorithm, which can handle rank O(d).

<u>Corollary [JLV 23]</u>: A generic tensor $T \in (\mathbb{F}^d)^{\otimes m}$ of tensor rank

$$\operatorname{rank}(T) = O(d^{\lfloor m/2 \rfloor})$$

has a unique tensor rank decomposition, which is recovered in $n^{O(m)}$ -time by applying our algorithm to $T\left(\left(\mathbb{F}^d\right)^{\otimes \lfloor m/2 \rfloor}\right)$.

- *r*-aided rank: $T = \sum_i v_i \otimes w_i$, where $v_i \in \text{rank} r$ matrices
- Applications in signal processing and machine learning [Comon, Jutten 2010]

<u>Corollary [JLV 23]</u>: A generic tensor $T \in \mathbb{F}^d \otimes \mathbb{F}^d \otimes \mathbb{F}^k$ of r-aided rank

$$r - aided rank(T) \le min\{\Omega_r(d^2), k\}$$

has a unique r-aided rank decomposition, which is recovered in $d^{O(r)}$ -time by applying our algorithm to $T(\mathbb{F}^k)$.

Algorithm: Takeaways

- Natural algorithmic problem
- Captures wide array of decomposition problems
- NP-hard even for X = rank-one matrices

Aim: Compute intersection of variety X and linear subspace U

Main Result: Can design polynomial time algorithm if U is generic and $\dim(U)$ is not too large

Algorithm: Takeaways

- Natural algorithmic problem
- Captures wide array of decomposition problems
- NP-hard even for X = rank-one matrices

Aim: Compute intersection of variety X and linear subspace U

Main Result: Can design polynomial time algorithm if U is generic and $\dim(U)$ is not too large

Future Directions:

- New applications for different choices of varieties?
- Robust versions of the statement?
- Using algebraic geometry ideas for other algorithmic problems

Two goals

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in \mathbb{F}^{d_x} \otimes \mathbb{F}^{d_y} \otimes \mathbb{F}^{d_z} \quad (1)$$

1. <u>Algorithms</u>

[JLV 2023, published in FOCS]

Given a tensor $T \in \mathbb{F}^{d_x} \otimes \mathbb{F}^{d_y} \otimes \mathbb{F}^{d_z}$, find a rank decomposition (1).

2. <u>Uniqueness</u>

[LP 2023, published in FoM Sigma]

Given a rank decomposition (1), prove that it is the unique rank decomposition.

Uniqueness

Jennrich's Uniqueness Theorem: Given a rank decomposition

$$T = \sum_{a \in [d]} x_a \otimes y_a \otimes z_a \in \mathbb{F}^d \otimes \mathbb{F}^d \otimes \mathbb{F}^2 \quad (1)$$

If it holds that

- 1. $\{x_1, \dots, x_d\} \subseteq \mathbb{F}^d$ is linearly independent,
- 2. $\{y_1, \dots, y_d\} \subseteq \mathbb{F}^d$ is linearly independent,
- 3. and $\{z_1, \dots, z_d\} \subseteq \mathbb{F}^2$ are non-parallel

then (1) is the unique rank decomposition of T.

Uniqueness

Jennrich's Uniqueness Theorem: Given a rank decomposition

$$T = \sum_{a \in [d]} x_a \otimes y_a \otimes z_a \in \mathbb{F}^d \otimes \mathbb{F}^d \otimes \mathbb{F}^2 \quad (1)$$

If it holds that

- 1. $\{x_1, \dots, x_d\} \subseteq \mathbb{F}^d$ is linearly independent,
- 2. $\{y_1, \dots, y_d\} \subseteq \mathbb{F}^d$ is linearly independent,
- 3. and $\{z_1, \dots, z_d\} \subseteq \mathbb{F}^2$ are non-parallel

then (1) is the unique rank decomposition of T.

<u>Jennrich's Algorithm:</u> Finds the decomposition (1) efficiently!

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in \mathbb{F}^{d_x} \otimes \mathbb{F}^{d_y} \otimes \mathbb{F}^{d_z} \quad (1)$$

<u>Definition</u>: The Kruskal rank of $\{x_1, ..., x_n\} \in \mathbb{F}^{d_x}$ is the largest integer k_x such that every subset $S \subseteq \{x_1, ..., x_n\}$ of size $|S| = k_x$ is linearly independent. Kruskal rank is NP-Hard!

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in \mathbb{F}^{d_x} \otimes \mathbb{F}^{d_y} \otimes \mathbb{F}^{d_z}$$
(1)

<u>Definition</u>: The Kruskal rank of $\{x_1, ..., x_n\} \in \mathbb{F}^{d_x}$ is the largest integer k_x such that every subset $S \subseteq \{x_1, ..., x_n\}$ of size $|S| = k_x$ is linearly independent. Kruskal rank is NP-Hard!

$$T = e_1^{\otimes 3} + e_2^{\otimes 3} + e_3^{\otimes 3} + e_4^{\otimes 3} + (e_1 + e_2) \otimes (e_2 + e_3) \otimes (e_1 + e_4)$$

$$x_1 \otimes y_1 \otimes z_1 \qquad \dots \qquad x_5 \qquad \otimes \qquad y_5 \qquad \otimes \qquad z_5$$

$$\{x_1, \dots, x_5\} = \{e_1, e_2, e_3, e_4, e_1 + e_2\}, \qquad k_x = 2.$$

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in \mathbb{F}^{d_x} \otimes \mathbb{F}^{d_y} \otimes \mathbb{F}^{d_z} \quad (1)$$

<u>Definition</u>: The Kruskal rank of $\{x_1, ..., x_n\} \in \mathbb{F}^{d_x}$ is the largest integer k_x such that every subset $S \subseteq \{x_1, ..., x_n\}$ of size $|S| = k_x$ is linearly

independent. Kruskal rank is NP-Hard!

<u>Kruskal's theorem</u>: If $2n \le k_x + k_y + k_z - 2$, then (1) is the unique

rank decomposition of T.

Example [Jennrich's Theorem]: $k_x = k_y = n$ and $k_z \ge 2$.

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in \mathbb{F}^{d_x} \otimes \mathbb{F}^{d_y} \otimes \mathbb{F}^{d_z} \quad (1)$$

<u>Definition</u>: The Kruskal rank of $\{x_1, ..., x_n\} \in \mathbb{F}^{d_x}$ is the largest integer k_x such that every subset $S \subseteq \{x_1, ..., x_n\}$ of size $|S| = k_x$ is linearly

independent. Kruskal rank is NP-Hard!

<u>Kruskal's theorem</u>: If $2n \le k_x + k_y + k_z - 2$, then (1) is the unique

rank decomposition of T.

Example [Jennrich's Theorem]: $k_x = k_y = n$ and $k_z \ge 2$. $\{x_1, \dots, x_n\}$ and $\{y_1, \dots, y_n\}$ are linearly independent

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in \mathbb{F}^{d_x} \otimes \mathbb{F}^{d_y} \otimes \mathbb{F}^{d_z} \quad (1)$$

• <u>Recall the general setup</u>: We are handed a set of product tensors $\{x_a \otimes y_a \otimes z_a : a \in [n]\}$, and want to determine if their sum (1) is a unique rank decomposition.

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in \mathbb{F}^{d_x} \otimes \mathbb{F}^{d_y} \otimes \mathbb{F}^{d_z} \quad (1)$$

- <u>Recall the general setup</u>: We are handed a set of product tensors $\{x_a \otimes y_a \otimes z_a : a \in [n]\}$, and want to determine if their sum (1) is a unique rank decomposition.
- <u>Natural tool:</u> Matroid theory (the study of finite sets of vectors).

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in \mathbb{F}^{d_x} \otimes \mathbb{F}^{d_y} \otimes \mathbb{F}^{d_z} \quad (1)$$

- <u>Recall the general setup</u>: We are handed a set of product tensors $\{x_a \otimes y_a \otimes z_a : a \in [n]\}$, and want to determine if their sum (1) is a unique rank decomposition.
- <u>Natural tool</u>: <u>Matroid theory</u> (the study of finite sets of vectors).
- <u>Line of attack</u>: Determine matroidal properties of sets of product tensors.

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in \mathbb{F}^{d_x} \otimes \mathbb{F}^{d_y} \otimes \mathbb{F}^{d_z} \quad (1)$$

- <u>Recall the general setup</u>: We are handed a set of product tensors $\{x_a \otimes y_a \otimes z_a : a \in [n]\}$, and want to determine if their sum (1) is a unique rank decomposition.
- <u>Natural tool</u>: <u>Matroid theory</u> (the study of finite sets of vectors).
- <u>Line of attack</u>: Determine matroidal properties of sets of product tensors.

Rest of talk: A splitting theorem for product tensors

<u>Definition</u>: A set of vectors $E = \{v_1, ..., v_n\}$ splits if there exists a non-trivial subset $S \subseteq E$ such that

$$\operatorname{span}(S) \cap \operatorname{span}(E \setminus S) = \{0\}$$
(2)

E splits if there exists $S \subseteq E$ such that $\operatorname{span}(S) \cap \operatorname{span}(E \setminus S) = \{0\}$ $E = \{e_1, e_2, e_1 + e_2, e_3, e_4, e_3 + e_4\}$ span(E) $span\{e_1, e_2, e_1 + e_2\}$ $span\{e_3, e_4, e_3 + e_4\}$

E splits if there exists $S \subseteq E$ such that $E = \{e_1, e_2, e_1 + e_2, e_3, e_4, e_3 + e_4\} \cup \{e_1 + e_3\} \operatorname{span}(S) \cap \operatorname{span}(E \setminus S) = \{0\}$

span(E)

$span\{e_1, e_2, e_1 + e_2, e_1 + e_3\} = e_3 = span\{e_3, e_4, e_3 + e_4\}$

E splits if there exists $S \subseteq E$ such that $E = \{e_1, e_2, e_1 + e_2, e_3, e_4, e_3 + e_4\} \cup \{e_1 + e_3\} \operatorname{span}(S) \cap \operatorname{span}(E \setminus S) = \{0\}$

 $\operatorname{span}(E)$

span $\{e_1, e_2, e_1 + e_2\}$ e_1 span $\{e_3, e_4, e_3 + e_4, e_1 + e_3\}$

<u>Definition</u>: A set of vectors $E = \{v_1, ..., v_n\}$ splits if there exists a non-trivial subset $S \subseteq E$ such that

$$\operatorname{span}(S) \cap \operatorname{span}(E \setminus S) = \{0\}$$
(2)

<u>Definition</u>: A set of vectors $E = \{v_1, ..., v_n\}$ splits if there exists a non-trivial subset $S \subseteq E$ such that

$$\operatorname{span}(S) \cap \operatorname{span}(E \setminus S) = \{0\}$$
 (2)

<u>Fact:</u> If (2) holds, and $\sum(E) = 0$, then $\sum(S) = \sum(E \setminus S) = 0$

<u>Definition</u>: A set of vectors $E = \{v_1, ..., v_n\}$ splits if there exists a non-trivial subset $S \subseteq E$ such that

$$\operatorname{span}(S) \cap \operatorname{span}(E \setminus S) = \{0\}$$
 (2)

<u>Fact:</u> If (2) holds, and $\sum(E) = 0$, then $\sum(S) = \sum(E \setminus S) = 0$

Proof: $\sum(E) = 0$

 $\Rightarrow \sum(S) = -\sum(E \setminus S) \in \operatorname{span}(S) \cap \operatorname{span}(E \setminus S) = \{0\}$

E splits if there exists $S \subseteq E$ such that span $(S) \cap$ span $(E \setminus S) = \{0\}$

Splitting theorem [LP 2023]: Let $E = \{x_a \otimes y_a : a \in [n]\}$.

lf

dimspan(E)
$$\leq d_x^{[n]} + d_y^{[n]} - 2$$

 $d_x^{[n]} = \text{dimspan}\{x_1, \dots, x_n\}$

then *E* splits.

E splits if there exists $S \subseteq E$ such that $span(S) \cap span(E \setminus S) = \{0\}$

Splitting theorem [LP 2023]: Let $E = \{x_a \otimes y_a : a \in [n]\}$.

lf

dimspan(E)
$$\leq d_x^{[n]} + d_y^{[n]} - 2$$

$$d_x^{[n]} = \text{dimspan}\{x_1, \dots, x_n\}$$

then *E* splits.

<u>Corollary:</u> A uniqueness result that is stronger than Jennrich's (and Kruskal's!)

E splits if there exists $S \subseteq E$ such that $span(S) \cap span(E \setminus S) = \{0\}$

Splitting theorem [LP 2023]: Let $E = \{x_a \otimes y_a : a \in [n]\}$.

lf

dimspan(E)
$$\leq d_x^{[n]} + d_y^{[n]} - 2$$

$$d_x^{[n]} = \text{dimspan}\{x_1, \dots, x_n\}$$

then *E* splits.

<u>Corollary</u>: A uniqueness result that is stronger than Jennrich's (and Kruskal's!)

More matroid theory for product tensors?

E splits if there exists $S \subseteq E$ such that span $(S) \cap$ span $(E \setminus S) = \{0\}$

Splitting theorem [LP 2023]: Let $E = \{x_a \otimes y_a \otimes z_a : a \in [n]\}$.

lf

dimspan(E)
$$\leq d_x^{[n]} + d_y^{[n]} + d_z^{[n]} - 3$$

$$d_x^{[n]} = \text{dimspan}\{x_1, \dots, x_n\}$$

then *E* splits.

E splits if there exists $S \subseteq E$ such that span $(S) \cap$ span $(E \setminus S) = \{0\}$

Splitting theorem [LP 2023]: Let $E = \{x_a \otimes y_a \otimes z_a : a \in [n]\}$.

lf

dimspan(E)
$$\leq d_x^{[n]} + d_y^{[n]} + d_z^{[n]} - 3$$

$$d_x^{[n]} = \text{dimspan}\{x_1, \dots, x_n\}$$

then *E* splits.

Corollary: If

$$n \le d_x^{[n]} + d_y^{[n]} + d_z^{[n]} - 2$$
,

then *E* splits.

E splits if there exists $S \subseteq E$ such that span $(S) \cap$ span $(E \setminus S) = \{0\}$

Splitting theorem [LP 2023]: Let $E = \{x_a \otimes y_a \otimes z_a : a \in [n]\}$.

lf

dimspan(E)
$$\leq d_x^{[n]} + d_y^{[n]} + d_z^{[n]} - 3$$

$$d_x^{[n]} = \text{dimspan}\{x_1, \dots, x_n\}$$

.

then *E* splits.

Corollary: If

$$n \le d_x^{[n]} + d_y^{[n]} + d_z^{[n]} - 2,$$

then *E* splits.

Splitting theorem => Corollary: If E is linearly independent, then it splits. Otherwise, dimspan(E) $\leq n - 1 \leq d_x^{[n]} + d_y^{[n]} + d_z^{[n]} - 3$, so E splits by splitting theorem.

E splits if there exists $S \subseteq E$ such that span $(S) \cap$ span $(E \setminus S) = \{0\}$

<u>Splitting theorem [LP 2023]</u>: Let $E = \{x_a \otimes y_a \otimes z_a : a \in [n]\}$.

then *E* splits.

lf

dimspan(E) $\leq d_x^{[n]} + d_y^{[n]} + d_z^{[n]} - 3$ $d_x^{[n]} = \text{dimspan}\{x_1, \dots, x_n\}$

Corollary: If

$$n \le d_x^{[n]} + d_y^{[n]} + d_z^{[n]} - 2$$

then *E* splits.

Replaces Kruskal ranks with standard ranks

<u>Corollary:</u> If $2n \le d_x^{[n]} + d_y^{[n]} + d_z^{[n]} - 2$, then for any other set of product tensors $E' = \{x'_a \otimes y'_a \otimes z'_a : a \in [n]\}, \quad E \cup E'$ splits.

Recall the tensor decomposition setup...

We are handed a rank decomposition

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a$$

... and want to control other rank decompositions

$$T = \sum_{a \in [n]} x'_a \otimes y'_a \otimes z'_a.$$

Recall the tensor decomposition setup...

We are handed a rank decomposition

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a$$

... and want to control other rank decompositions

$$T = \sum_{a \in [n]} x'_a \otimes y'_a \otimes z'_a.$$
Replaces Kruskal ranks with standard ranks
Corollary: If $2n \le d_x^{[n]} + d_y^{[n]} + d_z^{[n]} - 2$, then for any other set of product
tensors $E' = \{x'_a \otimes y'_a \otimes z'_a : a \in [n]\}, \quad E \cup E'$ splits.

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in \mathbb{F}^{d_x} \otimes \mathbb{F}^{d_y} \otimes \mathbb{F}^{d_z} \quad (1)$$

Corollary => Kruskal generalization

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in \mathbb{F}^{d_x} \otimes \mathbb{F}^{d_y} \otimes \mathbb{F}^{d_z} \quad (1)$$

Corollary => Kruskal generalization

Proof:

By previous corollary, $\{x_a \otimes y_a \otimes z_a, x'_a \otimes y'_a \otimes z'_a : a \in [n]\}$ splits

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in \mathbb{F}^{d_x} \otimes \mathbb{F}^{d_y} \otimes \mathbb{F}^{d_z}$$
(1)

Corollary [L-Petrov]: If $d_x^{[n]} = \text{dimspan}\{x_1, \dots, x_n\}$ $2n \le d_x^{[n]} + d_y^{[n]} + d_z^{[n]} - 2, \quad \text{Poly time to check!}$

then for any other decomposition $T = \sum_{a \in [n]} x'_a \otimes y'_a \otimes z'_a$

there exist non-trivial subsets $S, R \subseteq [n]$ such that

$$\sum_{a \in S} x_a \otimes y_a \otimes z_a = \sum_{a \in R} x'_a \otimes y'_a \otimes z'_a$$

Uniqueness

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in \mathbb{F}^{d_x} \otimes \mathbb{F}^{d_y} \otimes \mathbb{F}^{d_z}$$
(1)

<u>Theorem [LP 2023]</u>: If for every subset $S \subseteq [n]$ of size $|S| \ge 2$, it holds that

$$2|S| \le d_x^S + d_y^S + d_z^S - 2,$$

$$d_x^S = \text{dimspan}\{x_a : a \in S\}$$

then (1) is the unique rank decomposition of T.

Uniqueness

$$T = \sum_{a \in [n]} x_a \otimes y_a \otimes z_a \in \mathbb{F}^{d_x} \otimes \mathbb{F}^{d_y} \otimes \mathbb{F}^{d_z}$$
(1)

<u>Theorem [LP 2023]</u>: If for every subset $S \subseteq [n]$ of size $|S| \ge 2$, it holds that

$$2|S| \le d_x^S + d_y^S + d_z^S - 2,$$

$$d_x^S = \text{dimspan}\{x_a : a \in S\}$$

then (1) is the unique rank decomposition of T.

Conclusion

Algorithms:

- Intersecting variety X with subspace \leftrightarrow (X, k)-decompositions
- Broad applications for different choices of X
- In particular, can decompose tensors of quadratically higher rank than Jennrich

Uniqueness:

- Splitting theorem "demystifies" Kruskal's theorem
- More matroid theory for product tensors?

Algorithms and Uniqueness of Tensor Decompositions

Benjamin Lovitz

Northeastern University

UMass Boston Department of Mathematics

November 14, 2023

