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A matrix is an element of 𝔽!! ⊗𝔽!" 2 4
6 12 ∈ 𝔽"⊗𝔽"

A rank-one matrix is a matrix of the form 𝑥 ⊗ 𝑦 = 𝑥𝑦# = 𝑥$𝑦% $,%



What is a matrix?

A matrix is an element of 𝔽!! ⊗𝔽!" 2 4
6 12 = '
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A rank-one matrix is a matrix of the form 𝑥 ⊗ 𝑦 = 𝑥𝑦# = 𝑥$𝑦% $,%



What is a matrix tensor?
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What is a matrix tensor?

A matrix tensor is an element of 𝔽!! ⊗𝔽!" ⊗𝔽!# 15 18
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A matrix tensor is an element of 𝔽!! ⊗𝔽!" ⊗𝔽!# 15 18
20 24 = '

" ⊗ (
* ⊗ +

,

A product tensor is a tensor of the form  𝑥 ⊗ 𝑦⊗ 𝑧 = 𝑥$𝑦%𝑧) $,%,)

What is a matrix tensor?



Tensor decompositions

Definition: Let 𝑛 ∈ ℕ and 𝑛 ≔ {1,… , 𝑛}.

For 𝑇 ∈ 𝔽!! ⊗𝔽!" ⊗𝔽!# , an expression

is called a decomposition of T into product tensors

rank 𝑇 := smallest  𝑛

𝑇 = #
!∈[$]

𝑥!⊗𝑦!⊗𝑧! ∈ 𝔽&! ⊗𝔽&" ⊗𝔽&#

= + + …+



Uniqueness of tensor decompositions

𝑇 = #
!∈[$]

𝑥!⊗𝑦!⊗𝑧! ∈ 𝔽&! ⊗𝔽&" ⊗𝔽&#

Definition: Let 𝑛 ∈ ℕ and 𝑛 ≔ {1,… , 𝑛}.

A rank decomposition

is called the unique (rank) decomposition of T if for any other decomposition

𝑇 = #
!∈[$]

𝑥!' ⊗𝑦!' ⊗𝑧!' ∈ 𝔽&! ⊗𝔽&" ⊗𝔽&#

there is a permutation 𝜎 ∈ 𝑆. such that 𝑥/⊗𝑦/⊗ 𝑧/ = 𝑥0 /
1 ⊗𝑦0 /

1 ⊗ 𝑧0 /
1

for all 𝑎 ∈ 𝑛 .

= + + …+









Application: Latent parameter learning

• Let 𝐴, 𝐵, 𝐶, 𝐿 be finite random variables such that 𝐴, 𝐵, 𝐶 are	conditionally	
independent,	i.e.

Pr 𝑎, 𝑏, 𝑐 𝑙 = Pr 𝑎 𝑙 Pr 𝑏 𝑙 Pr(𝑐|𝑙) for all 𝑎, 𝑏, 𝑐, 𝑙.
• Goal: Given the probability vector Pr 𝐴, 𝐵, 𝐶 , determine Pr 𝐴, 𝐵, 𝐶, 𝐿 .
• Method:

Pr 𝐴, 𝐵, 𝐶 =V
2

Pr 𝑙 Pr(𝐴, 𝐵, 𝐶|𝑙) =V
2

Pr 𝑙 Pr 𝐴 𝑙 ⊗ Pr 𝐵 𝑙 ⊗ Pr(𝐶|𝑙)

… If Pr 𝐴, 𝐵, 𝐶 has a unique decomposition, then we can recover Pr(𝐴, 𝐵, 𝐶, 𝑙),

• Applications: Learning mixtures of spherical gaussians, phylogenetic tree 
reconstruction, hidden Markov models, orbit retrieval, blind signal separation, 
document topic models, …

𝐿 is for latent

L

A B C



Two goals
1. Algorithms

Given a tensor 𝑇 ∈ 𝔽!! ⊗𝔽!" ⊗𝔽!#, find a rank 
decomposition (1).

2. Uniqueness
Given a rank decomposition (1), prove that it is the unique 
rank decomposition.

𝑇 = #
!∈[$]

𝑥!⊗𝑦!⊗𝑧! ∈ 𝔽&! ⊗𝔽&" ⊗𝔽&# (1)

[JLV 2023, published in FOCS]
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Tensor: 𝑇 ∈ 𝔽- ⊗𝔽- ⊗𝔽.

Decomposition: Sum of 𝑅 product tensors

𝑇 = 𝑥!⊗𝑦!⊗𝑧! + 𝑥"⊗𝑦"⊗𝑧" +⋯+ 𝑥#⊗𝑦#⊗𝑧#

Idea: If we view 𝑇 as an 𝑑"×𝑘 matrix, then the image is in the span of the 𝑥$⊗𝑦$.

Algorithm idea

= + + …+



Tensor: 𝑇 ∈ 𝔽- ⊗𝔽- ⊗𝔽.

Decomposition: Sum of 𝑅 product tensors

𝑇 = 𝑥!⊗𝑦!⊗𝑧! + 𝑥"⊗𝑦"⊗𝑧" +⋯+ 𝑥#⊗𝑦#⊗𝑧#

Idea: If we view 𝑇 as an 𝑑"×𝑘 matrix, then the image is in the span of the 𝑥$⊗𝑦$.

• Finding rank-one matrices in im 𝑇 ↔ Finding tensor decompositions of 𝑇

Algorithm idea

= + + …+



Tensor: 𝑇 ∈ 𝔽- ⊗𝔽- ⊗𝔽.

Decomposition: Sum of 𝑅 product tensors

𝑇 = 𝑥!⊗𝑦!⊗𝑧! + 𝑥"⊗𝑦"⊗𝑧" +⋯+ 𝑥#⊗𝑦#⊗𝑧#

Idea: If we view 𝑇 as an 𝑑"×𝑘 matrix, then the image is in the span of the 𝑥$⊗𝑦$.

• Finding rank-one matrices in im 𝑇 ↔ Finding tensor decompositions of 𝑇

• Finding other types of matrices in im 𝑇 ↔ Finding other types of decompositions of 𝑇

Algorithm idea

= + + …+



𝑋, 𝑘 -decompositions

For 𝑇 ∈ 𝔽3⊗𝔽), 𝑋 ⊆ ℂ3 ,

an 𝑋, 𝑘 -decomposition is an expression

where 𝑣', … , 𝑣4 ∈ 𝑋

Example: When 𝑋 = 𝑋' = {rank 1 matrices} ⊆ 𝔽!⊗𝔽!, an 𝑋, 𝑘 -decomposition is 
just a tensor decomposition.

Viewing 𝑇 as a map 𝔽) → 𝔽3,   each 𝑣$ ∈ 𝑇 𝔽) ∩ 𝑋, 
so computing 𝑇 𝔽) ∩ 𝑋 ↔ 𝑋, 𝑘 -decomposing 𝑇

Theorem (informal) [JLV 2023]: For many algebraic varieties 𝑋,                                            
we can recover low-rank  (𝑋, 𝑘)-decompositions efficiently.

𝑇 =#
()*

$

𝑣(⊗𝑧( ∈ 𝔽+⊗𝔽,

0

𝑋
𝑇 ℂ,



Algebraic Varieties

𝑋 = {𝑥 ∈ 𝔽3: 𝑓' 𝑥 = ⋯ = 𝑓5 𝑥 = 0}

Variety: common zeroes of a set of polynomials

• 𝑓', 𝑓", … , 𝑓5 cut out the variety 𝑋



Algebraic Varieties

𝑋 = {𝑥 ∈ 𝔽3: 𝑓' 𝑥 = ⋯ = 𝑓5 𝑥 = 0}

Variety: common zeroes of a set of polynomials

𝑋 ⊆ 𝔽3is a (conic) variety iff
𝑣 ∈ 𝑋 ⟹ ∀𝜆 ∈ 𝔽, 𝜆𝑣 ∈ 𝑋

• 𝑓', 𝑓", … , 𝑓5 cut out the variety 𝑋

• Conic variety: 𝑓', 𝑓", … , 𝑓5 can be 
homogenous of same degree ℓ



Running example: rank-1 matrices
𝑋' = {𝑢'⊗𝑢" 𝑢' ∈ 𝔽!$ , 𝑢" ∈ 𝔽!%

𝑢*⊗𝑢- = 𝑢*𝑢-. is vector outer product.



Running example: rank-1 matrices
𝑋' = {𝑢'⊗𝑢" 𝑢' ∈ 𝔽!$ , 𝑢" ∈ 𝔽!%

• 𝑋' ⊂ 𝔽!$×!% is a conic variety cut out by 
degree-2 polynomials 

𝑢*⊗𝑢- = 𝑢*𝑢-. is vector outer product.



Running example: rank-1 matrices
𝑋' = {𝑢'⊗𝑢" 𝑢' ∈ 𝔽!$ , 𝑢" ∈ 𝔽!%

𝑀 ∈ 𝑋' iff
𝑀$$%$𝑀$%%% −𝑀$$%%𝑀$%%$ = 0

• 𝑋' ⊂ 𝔽!$×!% is a conic variety cut out by 
degree-2 polynomials 

• 𝑋'cut out by .$
"

.%
" homogenous degree 2 polynomials

∀1 ≤ 𝑖! < 𝑗! ≤ 𝑛!,
∀1 ≤ 𝑖"< 𝑗" ≤ 𝑛",

𝑖!

𝑖"

𝑗! 𝑗"

M

𝑢*⊗𝑢- = 𝑢*𝑢-. is vector outer product.

det(2 𝑥 2 𝑠𝑢𝑏𝑚𝑎𝑡𝑟𝑖𝑥) = 0



0

𝑋

𝑇 𝔽,

0

𝑋

𝑈

= + + …+

Algorithm for (𝑋, 𝑘)-decompositions Algorithm to compute 
𝑈 ∩ 𝑋 for linear 
subspace 𝑈 = 𝑇 𝔽.

Reduction: computing 𝑋, 𝑘 -decompositions              computing linear sections



Suppose 𝑈 ⊆ 𝔽3 has a basis {𝑣4, … , 𝑣5} such that each 𝑣6 ∈ 𝑋.

Problem: Given some other basis {𝑢4, … , 𝑢5} of 𝑈, recover {𝑣4, … , 𝑣5} (up to scale).

Example: Jennrich’s Algorithm: If 𝑈7 = span {𝑣4
⊗ℓ, … , 𝑣5

⊗ℓ} with {𝑣4, … , 𝑣5} linearly 
independent, then {𝑣4

⊗ℓ, … , 𝑣5
⊗ℓ} can be recovered from any basis of 𝑈′ in 𝐷9 ℓ -

time.

Jennrich’s Algorithm:
Pick 𝑇: ∈ 𝑈′ ,   𝑗 = 1,2 at random,     view these as maps      𝑇:: ℂ; ⊗-<4 → ℂ;

𝑇: = ∑6=4> 𝛼:,6𝑣6 𝑣6@
⊗-<4 𝑇:<4 = ∑6

4
A!,#

𝑤6 ⊗-<4𝑤6@ where 𝑤6@𝑣6$ = 𝛿6,6$

So 𝑇4𝑇B<4 = ∑6
A%,#
A&,#

𝑣6𝑤6@.     E-vectors / E-values of   𝑇4𝑇B<4 are    𝑣6 ,  A%,#
A&,#



Suppose 𝑈 ⊆ 𝔽3 has a basis {𝑣4, … , 𝑣5} such that each 𝑣6 ∈ 𝑋.
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Jennrich’s Algorithm:
Pick 𝑇: ∈ 𝑈′ ,   𝑗 = 1,2 at random,     view these as maps      𝑇:: 𝔽3 ⊗ℓ<4 → 𝔽3

𝑇: = ∑6=45 𝛼:,6𝑣6 𝑣6@
⊗ℓ<4 𝑇:<4 = ∑6

4
A!,#

𝑤6 ⊗ℓ<4𝑤6@ where 𝑤6@𝑣6$ = 𝛿6,6$

So 𝑇4𝑇B<4 = ∑6
A%,#
A&,#

𝑣6𝑤6@.     E-vectors / E-values of   𝑇4𝑇B<4 are    𝑣6 ,  A%,#
A&,#

Distinct for different 𝑖



Suppose 𝑈 ⊆ 𝔽3 has a basis {𝑣4, … , 𝑣5} such that each 𝑣6 ∈ 𝑋.

Problem: Given some other basis {𝑢4, … , 𝑢5} of 𝑈, recover {𝑣4, … , 𝑣5} (up to scale).

Example: Jennrich’s Algorithm: If 𝑈7 = span {𝑣4
⊗ℓ, … , 𝑣5

⊗ℓ} with {𝑣4, … , 𝑣5} linearly 
independent, then {𝑣4

⊗ℓ, … , 𝑣5
⊗ℓ} can be recovered from any basis of 𝑈′ in 𝐷9 ℓ -

time.

Lifted Jennrich’s Algorithm [JLV 23, DLCC 07]: Run Jennrich on  𝑈7 = 𝑈⊗ℓ ∩ 𝑋ℓ,
where 𝑋ℓ = span{𝑣⊗ℓ: 𝑣 ∈ 𝑋}. 𝑣⊗ℓ ∈ 𝑈1 ⟺ 𝑣 ∈ 𝑈 ∩ 𝑋



Suppose 𝑈 ⊆ 𝔽3 has a basis {𝑣4, … , 𝑣5} such that each 𝑣6 ∈ 𝑋.

Problem: Given some other basis {𝑢4, … , 𝑢5} of 𝑈, recover {𝑣4, … , 𝑣5} (up to scale).

Example: Jennrich’s Algorithm: If 𝑈7 = span {𝑣4
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⊗ℓ, … , 𝑣5
⊗ℓ} can be recovered from any basis of 𝑈′ in 𝐷9 ℓ -

time.

Lifted Jennrich’s Algorithm [JLV 23, DLCC 07]: Run Jennrich on  𝑈7 = 𝑈⊗ℓ ∩ 𝑋ℓ,
where 𝑋ℓ = span{𝑣⊗ℓ: 𝑣 ∈ 𝑋}.

Theorem (informal) [JLV 23]: Lifted Jennrich’s algorithm works already for small ℓ, 
provided that 𝑅 = dim(𝑈) is not too large.

𝑣⊗ℓ ∈ 𝑈1 ⟺ 𝑣 ∈ 𝑈 ∩ 𝑋
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independent, then {𝑣4

⊗ℓ, … , 𝑣5
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Lifted Jennrich’s Algorithm [JLV 23, DLCC 07]: Run Jennrich on  𝑈7 = 𝑈⊗ℓ ∩ 𝑋ℓ,
where 𝑋ℓ = span{𝑣⊗ℓ: 𝑣 ∈ 𝑋}. 𝑣⊗ℓ ∈ 𝑈1 ⟺ 𝑣 ∈ 𝑈 ∩ 𝑋

Theorem (informal) [JLV 23]: Lifted Jennrich’s algorithm works already for small ℓ, 
provided that 𝑅 = dim(𝑈) is not too large.

Example [JLV 23]: If 𝑈 ⊆ 𝔽'⊗ 𝔽' is spanned by 𝑛 ≤ (
)
𝑑 − 1 * generic product tensors,      

then these can be recovered from any basis of 𝑈 in poly(𝑑)-time.



Corollary [JLV 23]: A generic tensor  
𝑇 ∈ 𝔽! ⊗𝔽! ⊗𝔽!* with

rank 𝑇 ≤
1
4
𝑑 − 1 "

has a unique rank decomposition, that can be recovered in 
poly(𝑑)-time by applying lifted Jennrich to im 𝑇 .

•Maximum possible rank up to constant
• Quadratic improvement over Jennrich’s algorithm, which can 

handle rank 𝑂(𝑑).



Corollary [JLV 23]: A generic tensor

𝑇 ∈ 𝔽! ⊗$
of tensor rank

rank 𝑇 = 𝑂(𝑑⌊$/"⌋)

has a unique tensor rank decomposition, which is recovered 
in 𝑛( $ -time by applying our algorithm to 𝑇 𝔽! ⊗⌊$/"⌋ .



Corollary [JLV 23]: A generic tensor 𝑇 ∈ 𝔽! ⊗𝔽! ⊗𝔽)

of r-aided rank

r − aided rank(𝑇) ≤ min{Ω* 𝑑" , 𝑘}

has a unique r-aided rank decomposition, which is recovered in 
𝑑( * -time by applying our algorithm to 𝑇 𝔽) .

• 𝑟-aided rank:  𝑇 = ∑$ 𝑣$⊗𝑤$ , where  𝑣$ ∈ rank − 𝑟 matrices
• Applications in signal processing and machine learning [Comon, Jutten 2010]



Algorithm: Takeaways

Aim: Compute intersection of 
variety 𝑋 and linear subspace 𝑈

conic variety 
𝑋 ⊂ 𝔽+

Linear subspace 
𝑈 ⊂ 𝔽+

0

• Natural algorithmic problem
• Captures wide array of 

decomposition problems
• NP-hard even for X = rank-one 

matrices

Main Result: Can design polynomial time algorithm if 𝑈 is generic 
and dim(𝑈) is not too large
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variety 𝑋 and linear subspace 𝑈

conic variety 
𝑋 ⊂ 𝔽+

Linear subspace 
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0

Future Directions: 
• New applications for different choices of varieties?
• Robust versions of the statement?
• Using algebraic geometry ideas for other algorithmic problems 

• Natural algorithmic problem
• Captures wide array of 

decomposition problems
• NP-hard even for X = rank-one 

matrices

Main Result: Can design polynomial time algorithm if 𝑈 is generic 
and dim(𝑈) is not too large
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Given a tensor 𝑇 ∈ 𝔽!! ⊗𝔽!" ⊗𝔽!#, find a rank 
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2. Uniqueness
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[LP 2023, published in FoM Sigma]









Uniqueness
Jennrich’s Uniqueness Theorem: Given a rank decomposition

If it holds that

1. 𝑥4, … , 𝑥- ⊆ 𝔽- is linearly independent,

2. 𝑦4, … , 𝑦- ⊆ 𝔽- is linearly independent,

3. and 𝑧4, … , 𝑧- ⊆ 𝔽B are non-parallel

then (1) is the unique rank decomposition of 𝑇.

Jennrich’s Algorithm: Finds the decomposition (1) efficiently!

𝑇 = #
!∈[&]

𝑥!⊗𝑦!⊗𝑧! ∈ 𝔽&⊗𝔽&⊗𝔽- (1)
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Kruskal’s theorem

Definition: The Kruskal rank of {𝑥4, … , 𝑥5} ∈ 𝔽-+ is the largest integer 

𝑘E such that every subset 𝑆 ⊆ {𝑥4, … , 𝑥5} of size 𝑆 = 𝑘E is linearly 

independent.

𝑇 = #
!∈[$]

𝑥!⊗𝑦!⊗𝑧! ∈ 𝔽&! ⊗𝔽&" ⊗𝔽&# (1)

Kruskal rank is NP-Hard!



Kruskal’s theorem

Definition: The Kruskal rank of {𝑥4, … , 𝑥5} ∈ 𝔽-+ is the largest integer 

𝑘E such that every subset 𝑆 ⊆ {𝑥4, … , 𝑥5} of size 𝑆 = 𝑘E is linearly 

independent.

𝑇 = 𝑒4
⊗F + 𝑒B

⊗F + 𝑒F
⊗F + 𝑒G

⊗F + 𝑒4 + 𝑒B ⊗ 𝑒B + 𝑒F ⊗ 𝑒4 + 𝑒G

𝑥!⊗𝑦!⊗𝑧! …                                                 𝑥# ⊗ 𝑦# ⊗ 𝑧#

{𝑥', … , 𝑥+} = {𝑒', 𝑒", 𝑒(, 𝑒*, 𝑒' + 𝑒"},         𝑘Q = 2.

𝑇 = #
!∈[$]

𝑥!⊗𝑦!⊗𝑧! ∈ 𝔽&! ⊗𝔽&" ⊗𝔽&# (1)

Kruskal rank is NP-Hard!



Kruskal’s theorem

Definition: The Kruskal rank of {𝑥4, … , 𝑥5} ∈ 𝔽-+ is the largest integer 

𝑘E such that every subset 𝑆 ⊆ {𝑥4, … , 𝑥5} of size 𝑆 = 𝑘E is linearly 
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Matroid theory for product tensors

• Recall the general setup: We are handed a set of product tensors 
{𝑥J ⊗𝑦J ⊗ 𝑧J: 𝑎 ∈ 𝑛 }, and want to determine if their sum (1) is a 
unique rank decomposition.

• Natural tool: Matroid theory (the study of finite sets of vectors).

• Line of attack: Determine matroidal properties of sets of product 
tensors.

𝑇 = #
!∈[$]

𝑥!⊗𝑦!⊗𝑧! ∈ 𝔽&! ⊗𝔽&" ⊗𝔽&# (1)
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Rest of talk: A splitting theorem for product tensors



Splitting

Definition: A set of vectors 𝐸 = {𝑣4, … , 𝑣5} splits if there exists a non-trivial 

subset 𝑆 ⊆ 𝐸 such that

span 𝑆 ∩ span 𝐸 ∖ 𝑆 = 0 (2)
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Splitting theorem

Splitting theorem [LP 2023]: Let 𝐸 = {𝑥/⊗𝑦/: 𝑎 ∈ [𝑛]}.

If
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. − 2
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Corollary: If     2𝑛 ≤ 𝑑Q
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Corollary => Kruskal generalization

Corollary [LP 2023]: If

2𝑛 ≤ 𝑑Q
[.] + 𝑑W

[.] + 𝑑Z
[.] − 2,

then for any other decomposition

there exist non-trivial subsets 𝑆, 𝑇 ⊆ 𝑛 such that

𝑑$
[&] = dimspan{𝑥!, … , 𝑥&}

𝑇 = ∑!∈[$] 𝑥!' ⊗𝑦!' ⊗𝑧!'

#
!∈/

𝑥!⊗𝑦!⊗𝑧! = #
!∈.

𝑥!' ⊗𝑦!' ⊗𝑧!'

𝑇 = #
!∈[$]

𝑥!⊗𝑦!⊗𝑧! ∈ 𝔽&! ⊗𝔽&" ⊗𝔽&# (1)

Poly time to check!
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Corollary [L-Petrov]: If

2𝑛 ≤ 𝑑Q
[.] + 𝑑W

[.] + 𝑑Z
[.] − 2,

then for any other decomposition
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/∈4
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Poly time to check!



Uniqueness

Theorem [LP 2023]: If for every subset 𝑆 ⊆ 𝑛 of size 𝑆 ≥ 2, it holds 

that 

2 𝑆 ≤ 𝑑EQ + 𝑑HQ + 𝑑IQ − 2,

then (1) is the unique rank decomposition of T.

𝑑Qb = dimspan{𝑥/: 𝑎 ∈ 𝑆}

𝑇 = #
!∈[$]

𝑥!⊗𝑦!⊗𝑧! ∈ 𝔽&! ⊗𝔽&" ⊗𝔽&# (1)
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Conclusion

Algorithms:
• Intersecting variety 𝑋 with subspace   ↔ 𝑋, 𝑘 -decompositions
• Broad applications for different choices of 𝑋
• In particular, can decompose tensors of quadratically higher rank than Jennrich

Uniqueness:
• Splitting theorem “demystifies” Kruskal’s theorem
• More matroid theory for product tensors? 

= + + …+
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