
Algorithms and Uniqueness of Tensor Decompositions

Benjamin Lovitz
Northeastern University

UMass Boston Department of Mathematics
November 14, 2023

What is a matrix?

What is a matrix?

A matrix is an element of 𝔽!! ⊗𝔽!" 2 4
6 12 ∈ 𝔽"⊗𝔽"

A rank-one matrix is a matrix of the form 𝑥 ⊗ 𝑦 = 𝑥𝑦# = 𝑥$𝑦% $,%

What is a matrix?

A matrix is an element of 𝔽!! ⊗𝔽!" 2 4
6 12 = '

((2 4)

A rank-one matrix is a matrix of the form 𝑥 ⊗ 𝑦 = 𝑥𝑦# = 𝑥$𝑦% $,%

What is a matrix tensor?

30 36
40 48

What is a matrix tensor?

A matrix tensor is an element of 𝔽!! ⊗𝔽!" ⊗𝔽!# 15 18
20 24 ∈ 𝔽"⊗𝔽"⊗𝔽"

A product tensor is a tensor of the form 𝑥 ⊗ 𝑦⊗ 𝑧 = 𝑥$𝑦%𝑧) $,%,)

30 36
40 48

A matrix tensor is an element of 𝔽!! ⊗𝔽!" ⊗𝔽!# 15 18
20 24 = '

" ⊗ (
* ⊗ +

,

A product tensor is a tensor of the form 𝑥 ⊗ 𝑦⊗ 𝑧 = 𝑥$𝑦%𝑧) $,%,)

What is a matrix tensor?

Tensor decompositions

Definition: Let 𝑛 ∈ ℕ and 𝑛 ≔ {1,… , 𝑛}.

For 𝑇 ∈ 𝔽!! ⊗𝔽!" ⊗𝔽!# , an expression

is called a decomposition of T into product tensors

rank 𝑇 := smallest 𝑛

𝑇 = #
!∈[$]

𝑥!⊗𝑦!⊗𝑧! ∈ 𝔽&! ⊗𝔽&" ⊗𝔽&#

= + + …+

Uniqueness of tensor decompositions

𝑇 = #
!∈[$]

𝑥!⊗𝑦!⊗𝑧! ∈ 𝔽&! ⊗𝔽&" ⊗𝔽&#

Definition: Let 𝑛 ∈ ℕ and 𝑛 ≔ {1,… , 𝑛}.

A rank decomposition

is called the unique (rank) decomposition of T if for any other decomposition

𝑇 = #
!∈[$]

𝑥!' ⊗𝑦!' ⊗𝑧!' ∈ 𝔽&! ⊗𝔽&" ⊗𝔽&#

there is a permutation 𝜎 ∈ 𝑆. such that 𝑥/⊗𝑦/⊗ 𝑧/ = 𝑥0 /
1 ⊗𝑦0 /

1 ⊗ 𝑧0 /
1

for all 𝑎 ∈ 𝑛 .

= + + …+

Application: Latent parameter learning

• Let 𝐴, 𝐵, 𝐶, 𝐿 be finite random variables such that 𝐴, 𝐵, 𝐶 are	conditionally	
independent,	i.e.

Pr 𝑎, 𝑏, 𝑐 𝑙 = Pr 𝑎 𝑙 Pr 𝑏 𝑙 Pr(𝑐|𝑙) for all 𝑎, 𝑏, 𝑐, 𝑙.
• Goal: Given the probability vector Pr 𝐴, 𝐵, 𝐶 , determine Pr 𝐴, 𝐵, 𝐶, 𝐿 .
• Method:

Pr 𝐴, 𝐵, 𝐶 =V
2

Pr 𝑙 Pr(𝐴, 𝐵, 𝐶|𝑙) =V
2

Pr 𝑙 Pr 𝐴 𝑙 ⊗ Pr 𝐵 𝑙 ⊗ Pr(𝐶|𝑙)

… If Pr 𝐴, 𝐵, 𝐶 has a unique decomposition, then we can recover Pr(𝐴, 𝐵, 𝐶, 𝑙),

• Applications: Learning mixtures of spherical gaussians, phylogenetic tree
reconstruction, hidden Markov models, orbit retrieval, blind signal separation,
document topic models, …

𝐿 is for latent

L

A B C

Two goals
1. Algorithms

Given a tensor 𝑇 ∈ 𝔽!! ⊗𝔽!" ⊗𝔽!#, find a rank
decomposition (1).

2. Uniqueness
Given a rank decomposition (1), prove that it is the unique
rank decomposition.

𝑇 = #
!∈[$]

𝑥!⊗𝑦!⊗𝑧! ∈ 𝔽&! ⊗𝔽&" ⊗𝔽&# (1)

[JLV 2023, published in FOCS]

[LP 2023, published in FoM Sigma]

Two goals
1. Algorithms

Given a tensor 𝑇 ∈ 𝔽!! ⊗𝔽!" ⊗𝔽!#, find a rank
decomposition (1).

2. Uniqueness
Given a rank decomposition (1), prove that it is the unique
rank decomposition.

𝑇 = #
!∈[$]

𝑥!⊗𝑦!⊗𝑧! ∈ 𝔽&! ⊗𝔽&" ⊗𝔽&# (1)

[JLV 2023, published in FOCS]

[LP 2023, published in FoM Sigma]

Tensor: 𝑇 ∈ 𝔽- ⊗𝔽- ⊗𝔽.

Decomposition: Sum of 𝑅 product tensors

𝑇 = 𝑥!⊗𝑦!⊗𝑧! + 𝑥"⊗𝑦"⊗𝑧" +⋯+ 𝑥#⊗𝑦#⊗𝑧#

Idea: If we view 𝑇 as an 𝑑"×𝑘 matrix, then the image is in the span of the 𝑥$⊗𝑦$.

Algorithm idea

= + + …+

Tensor: 𝑇 ∈ 𝔽- ⊗𝔽- ⊗𝔽.

Decomposition: Sum of 𝑅 product tensors

𝑇 = 𝑥!⊗𝑦!⊗𝑧! + 𝑥"⊗𝑦"⊗𝑧" +⋯+ 𝑥#⊗𝑦#⊗𝑧#

Idea: If we view 𝑇 as an 𝑑"×𝑘 matrix, then the image is in the span of the 𝑥$⊗𝑦$.

• Finding rank-one matrices in im 𝑇 ↔ Finding tensor decompositions of 𝑇

Algorithm idea

= + + …+

Tensor: 𝑇 ∈ 𝔽- ⊗𝔽- ⊗𝔽.

Decomposition: Sum of 𝑅 product tensors

𝑇 = 𝑥!⊗𝑦!⊗𝑧! + 𝑥"⊗𝑦"⊗𝑧" +⋯+ 𝑥#⊗𝑦#⊗𝑧#

Idea: If we view 𝑇 as an 𝑑"×𝑘 matrix, then the image is in the span of the 𝑥$⊗𝑦$.

• Finding rank-one matrices in im 𝑇 ↔ Finding tensor decompositions of 𝑇

• Finding other types of matrices in im 𝑇 ↔ Finding other types of decompositions of 𝑇

Algorithm idea

= + + …+

𝑋, 𝑘 -decompositions

For 𝑇 ∈ 𝔽3⊗𝔽), 𝑋 ⊆ ℂ3 ,

an 𝑋, 𝑘 -decomposition is an expression

where 𝑣', … , 𝑣4 ∈ 𝑋

Example: When 𝑋 = 𝑋' = {rank 1 matrices} ⊆ 𝔽!⊗𝔽!, an 𝑋, 𝑘 -decomposition is
just a tensor decomposition.

Viewing 𝑇 as a map 𝔽) → 𝔽3, each 𝑣$ ∈ 𝑇 𝔽) ∩ 𝑋,
so computing 𝑇 𝔽) ∩ 𝑋 ↔ 𝑋, 𝑘 -decomposing 𝑇

Theorem (informal) [JLV 2023]: For many algebraic varieties 𝑋,
we can recover low-rank (𝑋, 𝑘)-decompositions efficiently.

𝑇 =#
()*

$

𝑣(⊗𝑧(∈ 𝔽+⊗𝔽,

0

𝑋
𝑇 ℂ,

Algebraic Varieties

𝑋 = {𝑥 ∈ 𝔽3: 𝑓' 𝑥 = ⋯ = 𝑓5 𝑥 = 0}

Variety: common zeroes of a set of polynomials

• 𝑓', 𝑓", … , 𝑓5 cut out the variety 𝑋

Algebraic Varieties

𝑋 = {𝑥 ∈ 𝔽3: 𝑓' 𝑥 = ⋯ = 𝑓5 𝑥 = 0}

Variety: common zeroes of a set of polynomials

𝑋 ⊆ 𝔽3is a (conic) variety iff
𝑣 ∈ 𝑋 ⟹ ∀𝜆 ∈ 𝔽, 𝜆𝑣 ∈ 𝑋

• 𝑓', 𝑓", … , 𝑓5 cut out the variety 𝑋

• Conic variety: 𝑓', 𝑓", … , 𝑓5 can be
homogenous of same degree ℓ

Running example: rank-1 matrices
𝑋' = {𝑢'⊗𝑢" 𝑢' ∈ 𝔽!$, 𝑢" ∈ 𝔽!%

𝑢*⊗𝑢- = 𝑢*𝑢-. is vector outer product.

Running example: rank-1 matrices
𝑋' = {𝑢'⊗𝑢" 𝑢' ∈ 𝔽!$, 𝑢" ∈ 𝔽!%

• 𝑋' ⊂ 𝔽!$×!% is a conic variety cut out by
degree-2 polynomials

𝑢*⊗𝑢- = 𝑢*𝑢-. is vector outer product.

Running example: rank-1 matrices
𝑋' = {𝑢'⊗𝑢" 𝑢' ∈ 𝔽!$, 𝑢" ∈ 𝔽!%

𝑀 ∈ 𝑋' iff
𝑀$$%$𝑀$%%% −𝑀$$%%𝑀$%%$ = 0

• 𝑋' ⊂ 𝔽!$×!% is a conic variety cut out by
degree-2 polynomials

• 𝑋'cut out by .$
"

.%
" homogenous degree 2 polynomials

∀1 ≤ 𝑖! < 𝑗! ≤ 𝑛!,
∀1 ≤ 𝑖"< 𝑗" ≤ 𝑛",

𝑖!

𝑖"

𝑗! 𝑗"

M

𝑢*⊗𝑢- = 𝑢*𝑢-. is vector outer product.

det(2 𝑥 2 𝑠𝑢𝑏𝑚𝑎𝑡𝑟𝑖𝑥) = 0

0

𝑋

𝑇 𝔽,

0

𝑋

𝑈

= + + …+

Algorithm for (𝑋, 𝑘)-decompositions Algorithm to compute
𝑈 ∩ 𝑋 for linear
subspace 𝑈 = 𝑇 𝔽.

Reduction: computing 𝑋, 𝑘 -decompositions computing linear sections

Suppose 𝑈 ⊆ 𝔽3 has a basis {𝑣4, … , 𝑣5} such that each 𝑣6 ∈ 𝑋.

Problem: Given some other basis {𝑢4, … , 𝑢5} of 𝑈, recover {𝑣4, … , 𝑣5} (up to scale).

Example: Jennrich’s Algorithm: If 𝑈7 = span {𝑣4
⊗ℓ, … , 𝑣5

⊗ℓ} with {𝑣4, … , 𝑣5} linearly
independent, then {𝑣4

⊗ℓ, … , 𝑣5
⊗ℓ} can be recovered from any basis of 𝑈′ in 𝐷9 ℓ -

time.

Jennrich’s Algorithm:
Pick 𝑇: ∈ 𝑈′ , 𝑗 = 1,2 at random, view these as maps 𝑇:: ℂ; ⊗-<4 → ℂ;

𝑇: = ∑6=4> 𝛼:,6𝑣6 𝑣6@
⊗-<4 𝑇:<4 = ∑6

4
A!,#

𝑤6 ⊗-<4𝑤6@ where 𝑤6@𝑣6$ = 𝛿6,6$

So 𝑇4𝑇B<4 = ∑6
A%,#
A&,#

𝑣6𝑤6@. E-vectors / E-values of 𝑇4𝑇B<4 are 𝑣6 , A%,#
A&,#

Suppose 𝑈 ⊆ 𝔽3 has a basis {𝑣4, … , 𝑣5} such that each 𝑣6 ∈ 𝑋.

Problem: Given some other basis {𝑢4, … , 𝑢5} of 𝑈, recover {𝑣4, … , 𝑣5} (up to scale).

Example: Jennrich’s Algorithm: If 𝑈7 = span {𝑣4
⊗ℓ, … , 𝑣5

⊗ℓ} with {𝑣4, … , 𝑣5} linearly
independent, then {𝑣4

⊗ℓ, … , 𝑣5
⊗ℓ} can be recovered from any basis of 𝑈′ in 𝐷9 ℓ -

time.

Jennrich’s Algorithm:
Pick 𝑇: ∈ 𝑈′ , 𝑗 = 1,2 at random, view these as maps 𝑇:: 𝔽3 ⊗ℓ<4 → 𝔽3

𝑇: = ∑6=45 𝛼:,6𝑣6 𝑣6@
⊗ℓ<4 𝑇:<4 = ∑6

4
A!,#

𝑤6 ⊗ℓ<4𝑤6@ where 𝑤6@𝑣6$ = 𝛿6,6$

So 𝑇4𝑇B<4 = ∑6
A%,#
A&,#

𝑣6𝑤6@. E-vectors / E-values of 𝑇4𝑇B<4 are 𝑣6 , A%,#
A&,#

Distinct for different 𝑖

Suppose 𝑈 ⊆ 𝔽3 has a basis {𝑣4, … , 𝑣5} such that each 𝑣6 ∈ 𝑋.

Problem: Given some other basis {𝑢4, … , 𝑢5} of 𝑈, recover {𝑣4, … , 𝑣5} (up to scale).

Example: Jennrich’s Algorithm: If 𝑈7 = span {𝑣4
⊗ℓ, … , 𝑣5

⊗ℓ} with {𝑣4, … , 𝑣5} linearly
independent, then {𝑣4

⊗ℓ, … , 𝑣5
⊗ℓ} can be recovered from any basis of 𝑈′ in 𝐷9 ℓ -

time.

Lifted Jennrich’s Algorithm [JLV 23, DLCC 07]: Run Jennrich on 𝑈7 = 𝑈⊗ℓ ∩ 𝑋ℓ,
where 𝑋ℓ = span{𝑣⊗ℓ: 𝑣 ∈ 𝑋}. 𝑣⊗ℓ ∈ 𝑈1 ⟺ 𝑣 ∈ 𝑈 ∩ 𝑋

Suppose 𝑈 ⊆ 𝔽3 has a basis {𝑣4, … , 𝑣5} such that each 𝑣6 ∈ 𝑋.

Problem: Given some other basis {𝑢4, … , 𝑢5} of 𝑈, recover {𝑣4, … , 𝑣5} (up to scale).

Example: Jennrich’s Algorithm: If 𝑈7 = span {𝑣4
⊗ℓ, … , 𝑣5

⊗ℓ} with {𝑣4, … , 𝑣5} linearly
independent, then {𝑣4

⊗ℓ, … , 𝑣5
⊗ℓ} can be recovered from any basis of 𝑈′ in 𝐷9 ℓ -

time.

Lifted Jennrich’s Algorithm [JLV 23, DLCC 07]: Run Jennrich on 𝑈7 = 𝑈⊗ℓ ∩ 𝑋ℓ,
where 𝑋ℓ = span{𝑣⊗ℓ: 𝑣 ∈ 𝑋}.

Theorem (informal) [JLV 23]: Lifted Jennrich’s algorithm works already for small ℓ,
provided that 𝑅 = dim(𝑈) is not too large.

𝑣⊗ℓ ∈ 𝑈1 ⟺ 𝑣 ∈ 𝑈 ∩ 𝑋

Suppose 𝑈 ⊆ 𝔽3 has a basis {𝑣4, … , 𝑣5} such that each 𝑣6 ∈ 𝑋.

Problem: Given some other basis {𝑢4, … , 𝑢5} of 𝑈, recover {𝑣4, … , 𝑣5} (up to scale).

Example: Jennrich’s Algorithm: If 𝑈7 = span {𝑣4
⊗ℓ, … , 𝑣5

⊗ℓ} with {𝑣4, … , 𝑣5} linearly
independent, then {𝑣4

⊗ℓ, … , 𝑣5
⊗ℓ} can be recovered from any basis of 𝑈′ in 𝐷9 ℓ -

time.

Lifted Jennrich’s Algorithm [JLV 23, DLCC 07]: Run Jennrich on 𝑈7 = 𝑈⊗ℓ ∩ 𝑋ℓ,
where 𝑋ℓ = span{𝑣⊗ℓ: 𝑣 ∈ 𝑋}. 𝑣⊗ℓ ∈ 𝑈1 ⟺ 𝑣 ∈ 𝑈 ∩ 𝑋

Theorem (informal) [JLV 23]: Lifted Jennrich’s algorithm works already for small ℓ,
provided that 𝑅 = dim(𝑈) is not too large.

Example [JLV 23]: If 𝑈 ⊆ 𝔽'⊗ 𝔽' is spanned by 𝑛 ≤ (
)
𝑑 − 1 * generic product tensors,

then these can be recovered from any basis of 𝑈 in poly(𝑑)-time.

Corollary [JLV 23]: A generic tensor
𝑇 ∈ 𝔽! ⊗𝔽! ⊗𝔽!* with

rank 𝑇 ≤
1
4
𝑑 − 1 "

has a unique rank decomposition, that can be recovered in
poly(𝑑)-time by applying lifted Jennrich to im 𝑇 .

•Maximum possible rank up to constant
• Quadratic improvement over Jennrich’s algorithm, which can

handle rank 𝑂(𝑑).

Corollary [JLV 23]: A generic tensor

𝑇 ∈ 𝔽! ⊗$
of tensor rank

rank 𝑇 = 𝑂(𝑑⌊$/"⌋)

has a unique tensor rank decomposition, which is recovered
in 𝑛($ -time by applying our algorithm to 𝑇 𝔽! ⊗⌊$/"⌋ .

Corollary [JLV 23]: A generic tensor 𝑇 ∈ 𝔽! ⊗𝔽! ⊗𝔽)

of r-aided rank

r − aided rank(𝑇) ≤ min{Ω* 𝑑" , 𝑘}

has a unique r-aided rank decomposition, which is recovered in
𝑑(* -time by applying our algorithm to 𝑇 𝔽) .

• 𝑟-aided rank: 𝑇 = ∑$ 𝑣$⊗𝑤$, where 𝑣$ ∈ rank − 𝑟 matrices
• Applications in signal processing and machine learning [Comon, Jutten 2010]

Algorithm: Takeaways

Aim: Compute intersection of
variety 𝑋 and linear subspace 𝑈

conic variety
𝑋 ⊂ 𝔽+

Linear subspace
𝑈 ⊂ 𝔽+

0

• Natural algorithmic problem
• Captures wide array of

decomposition problems
• NP-hard even for X = rank-one

matrices

Main Result: Can design polynomial time algorithm if 𝑈 is generic
and dim(𝑈) is not too large

Algorithm: Takeaways

Aim: Compute intersection of
variety 𝑋 and linear subspace 𝑈

conic variety
𝑋 ⊂ 𝔽+

Linear subspace
𝑈 ⊂ 𝔽+

0

Future Directions:
• New applications for different choices of varieties?
• Robust versions of the statement?
• Using algebraic geometry ideas for other algorithmic problems

• Natural algorithmic problem
• Captures wide array of

decomposition problems
• NP-hard even for X = rank-one

matrices

Main Result: Can design polynomial time algorithm if 𝑈 is generic
and dim(𝑈) is not too large

Two goals
1. Algorithms

Given a tensor 𝑇 ∈ 𝔽!! ⊗𝔽!" ⊗𝔽!#, find a rank
decomposition (1).

2. Uniqueness
Given a rank decomposition (1), prove that it is the unique
rank decomposition.

𝑇 = #
!∈[$]

𝑥!⊗𝑦!⊗𝑧! ∈ 𝔽&! ⊗𝔽&" ⊗𝔽&# (1)

[JLV 2023, published in FOCS]

[LP 2023, published in FoM Sigma]

Uniqueness
Jennrich’s Uniqueness Theorem: Given a rank decomposition

If it holds that

1. 𝑥4, … , 𝑥- ⊆ 𝔽- is linearly independent,

2. 𝑦4, … , 𝑦- ⊆ 𝔽- is linearly independent,

3. and 𝑧4, … , 𝑧- ⊆ 𝔽B are non-parallel

then (1) is the unique rank decomposition of 𝑇.

Jennrich’s Algorithm: Finds the decomposition (1) efficiently!

𝑇 = #
!∈[&]

𝑥!⊗𝑦!⊗𝑧! ∈ 𝔽&⊗𝔽&⊗𝔽- (1)

Uniqueness
Jennrich’s Uniqueness Theorem: Given a rank decomposition

If it holds that

1. 𝑥4, … , 𝑥- ⊆ 𝔽- is linearly independent,

2. 𝑦4, … , 𝑦- ⊆ 𝔽- is linearly independent,

3. and 𝑧4, … , 𝑧- ⊆ 𝔽B are non-parallel

then (1) is the unique rank decomposition of 𝑇.

Jennrich’s Algorithm: Finds the decomposition (1) efficiently!

𝑇 = #
!∈[&]

𝑥!⊗𝑦!⊗𝑧! ∈ 𝔽&⊗𝔽&⊗𝔽- (1)

Kruskal’s theorem

Definition: The Kruskal rank of {𝑥4, … , 𝑥5} ∈ 𝔽-+ is the largest integer

𝑘E such that every subset 𝑆 ⊆ {𝑥4, … , 𝑥5} of size 𝑆 = 𝑘E is linearly

independent.

𝑇 = #
!∈[$]

𝑥!⊗𝑦!⊗𝑧! ∈ 𝔽&! ⊗𝔽&" ⊗𝔽&# (1)

Kruskal rank is NP-Hard!

Kruskal’s theorem

Definition: The Kruskal rank of {𝑥4, … , 𝑥5} ∈ 𝔽-+ is the largest integer

𝑘E such that every subset 𝑆 ⊆ {𝑥4, … , 𝑥5} of size 𝑆 = 𝑘E is linearly

independent.

𝑇 = 𝑒4
⊗F + 𝑒B

⊗F + 𝑒F
⊗F + 𝑒G

⊗F + 𝑒4 + 𝑒B ⊗ 𝑒B + 𝑒F ⊗ 𝑒4 + 𝑒G

𝑥!⊗𝑦!⊗𝑧! … 𝑥# ⊗ 𝑦# ⊗ 𝑧#

{𝑥', … , 𝑥+} = {𝑒', 𝑒", 𝑒(, 𝑒*, 𝑒' + 𝑒"}, 𝑘Q = 2.

𝑇 = #
!∈[$]

𝑥!⊗𝑦!⊗𝑧! ∈ 𝔽&! ⊗𝔽&" ⊗𝔽&# (1)

Kruskal rank is NP-Hard!

Kruskal’s theorem

Definition: The Kruskal rank of {𝑥4, … , 𝑥5} ∈ 𝔽-+ is the largest integer

𝑘E such that every subset 𝑆 ⊆ {𝑥4, … , 𝑥5} of size 𝑆 = 𝑘E is linearly

independent.

Kruskal’s theorem: If 2𝑛 ≤ 𝑘E + 𝑘H + 𝑘I − 2, then (1) is the unique

rank decomposition of T.

𝑇 = #
!∈[$]

𝑥!⊗𝑦!⊗𝑧! ∈ 𝔽&! ⊗𝔽&" ⊗𝔽&# (1)

Example [Jennrich’s Theorem]: 𝑘E = 𝑘H = 𝑛 and 𝑘I ≥ 2.

{𝑥4, … , 𝑥5} and {𝑦4, … , 𝑦5} are linearly independent

Kruskal rank is NP-Hard!

Kruskal’s theorem

Definition: The Kruskal rank of {𝑥4, … , 𝑥5} ∈ 𝔽-+ is the largest integer

𝑘E such that every subset 𝑆 ⊆ {𝑥4, … , 𝑥5} of size 𝑆 = 𝑘E is linearly

independent.

Kruskal’s theorem: If 2𝑛 ≤ 𝑘E + 𝑘H + 𝑘I − 2, then (1) is the unique

rank decomposition of T.

𝑇 = #
!∈[$]

𝑥!⊗𝑦!⊗𝑧! ∈ 𝔽&! ⊗𝔽&" ⊗𝔽&# (1)

Example [Jennrich’s Theorem]: 𝑘E = 𝑘H = 𝑛 and 𝑘I ≥ 2.

{𝑥4, … , 𝑥5} and {𝑦4, … , 𝑦5} are linearly independent

Kruskal rank is NP-Hard!

Matroid theory for product tensors

• Recall the general setup: We are handed a set of product tensors
{𝑥J ⊗𝑦J ⊗ 𝑧J: 𝑎 ∈ 𝑛 }, and want to determine if their sum (1) is a
unique rank decomposition.

• Natural tool: Matroid theory (the study of finite sets of vectors).

• Line of attack: Determine matroidal properties of sets of product
tensors.

𝑇 = #
!∈[$]

𝑥!⊗𝑦!⊗𝑧! ∈ 𝔽&! ⊗𝔽&" ⊗𝔽&# (1)

Matroid theory for product tensors

• Recall the general setup: We are handed a set of product tensors
{𝑥J ⊗𝑦J ⊗ 𝑧J: 𝑎 ∈ 𝑛 }, and want to determine if their sum (1) is a
unique rank decomposition.

• Natural tool: Matroid theory (the study of finite sets of vectors).

• Line of attack: Determine matroidal properties of sets of product
tensors.

𝑇 = #
!∈[$]

𝑥!⊗𝑦!⊗𝑧! ∈ 𝔽&! ⊗𝔽&" ⊗𝔽&# (1)

Matroid theory for product tensors

• Recall the general setup: We are handed a set of product tensors
{𝑥J ⊗𝑦J ⊗ 𝑧J: 𝑎 ∈ 𝑛 }, and want to determine if their sum (1) is a
unique rank decomposition.

• Natural tool: Matroid theory (the study of finite sets of vectors).

• Line of attack: Determine matroidal properties of sets of product
tensors.

𝑇 = #
!∈[$]

𝑥!⊗𝑦!⊗𝑧! ∈ 𝔽&! ⊗𝔽&" ⊗𝔽&# (1)

Matroid theory for product tensors

• Recall the general setup: We are handed a set of product tensors
{𝑥J ⊗𝑦J ⊗ 𝑧J: 𝑎 ∈ 𝑛 }, and want to determine if their sum (1) is a
unique rank decomposition.

• Natural tool: Matroid theory (the study of finite sets of vectors).

• Line of attack: Determine matroidal properties of sets of product
tensors.

𝑇 = #
!∈[$]

𝑥!⊗𝑦!⊗𝑧! ∈ 𝔽&! ⊗𝔽&" ⊗𝔽&# (1)

Rest of talk: A splitting theorem for product tensors

Splitting

Definition: A set of vectors 𝐸 = {𝑣4, … , 𝑣5} splits if there exists a non-trivial

subset 𝑆 ⊆ 𝐸 such that

span 𝑆 ∩ span 𝐸 ∖ 𝑆 = 0 (2)

E splits if there exists 𝑆 ⊆ 𝐸 such that
span 𝑆 ∩ span 𝐸 ∖ 𝑆 = 0

span 𝐸

span 𝐸 ∖ 𝑆span(𝑆)

span 𝐸

span{𝑒(, 𝑒* , 𝑒(+𝑒*}span{𝑒', 𝑒" , 𝑒'+𝑒"}

𝐸 = {𝑒', 𝑒" , 𝑒'+𝑒", 𝑒(, 𝑒* , 𝑒(+𝑒*}
E splits if there exists 𝑆 ⊆ 𝐸 such that
span 𝑆 ∩ span 𝐸 ∖ 𝑆 = 0

span 𝐸

𝐸 = {𝑒', 𝑒" , 𝑒'+𝑒", 𝑒(, 𝑒* , 𝑒(+𝑒*} ∪ { 𝑒'+𝑒(}

𝑒(span{𝑒', 𝑒" , 𝑒'+𝑒", 𝑒'+𝑒(} span{𝑒(, 𝑒* , 𝑒(+𝑒*}

E splits if there exists 𝑆 ⊆ 𝐸 such that
span 𝑆 ∩ span 𝐸 ∖ 𝑆 = 0

span 𝐸

span{𝑒(, 𝑒* , 𝑒(+𝑒*, 𝑒'+𝑒(}

𝐸 = {𝑒', 𝑒" , 𝑒'+𝑒", 𝑒(, 𝑒* , 𝑒(+𝑒*} ∪ { 𝑒'+𝑒(}

span{𝑒', 𝑒" , 𝑒'+𝑒"} 𝑒'

E splits if there exists 𝑆 ⊆ 𝐸 such that
span 𝑆 ∩ span 𝐸 ∖ 𝑆 = 0

Splitting

Definition: A set of vectors 𝐸 = {𝑣4, … , 𝑣5} splits if there exists a non-trivial

subset 𝑆 ⊆ 𝐸 such that

span 𝑆 ∩ span 𝐸 ∖ 𝑆 = 0 (2)

Splitting

Definition: A set of vectors 𝐸 = {𝑣4, … , 𝑣5} splits if there exists a non-trivial

subset 𝑆 ⊆ 𝐸 such that

span 𝑆 ∩ span 𝐸 ∖ 𝑆 = 0 (2)

Fact: If (2) holds, and ∑ 𝐸 = 0, then ∑ 𝑆 = ∑ 𝐸 ∖ 𝑆 = 0

Splitting

Definition: A set of vectors 𝐸 = {𝑣4, … , 𝑣5} splits if there exists a non-trivial

subset 𝑆 ⊆ 𝐸 such that

span 𝑆 ∩ span 𝐸 ∖ 𝑆 = 0 (2)

Proof: ∑ 𝐸 = 0

⇒ ∑ 𝑆 = −∑ 𝐸 ∖ 𝑆 ∈ span 𝑆 ∩ span 𝐸 ∖ 𝑆 = {0}

Fact: If (2) holds, and ∑ 𝐸 = 0, then ∑ 𝑆 = ∑ 𝐸 ∖ 𝑆 = 0

Splitting theorem

Splitting theorem [LP 2023]: Let 𝐸 = {𝑥/⊗𝑦/: 𝑎 ∈ [𝑛]}.

If
dimspan(𝐸) ≤ 𝑑Q

. + 𝑑W
. − 2

then 𝐸 splits. 𝑑Q
[.] = dimspan{𝑥', … , 𝑥.}

E splits if there exists 𝑆 ⊆ 𝐸 such that
span 𝑆 ∩ span 𝐸 ∖ 𝑆 = 0

Splitting theorem

Splitting theorem [LP 2023]: Let 𝐸 = {𝑥/⊗𝑦/: 𝑎 ∈ [𝑛]}.

If
dimspan(𝐸) ≤ 𝑑Q

. + 𝑑W
. − 2

then 𝐸 splits. 𝑑Q
[.] = dimspan{𝑥', … , 𝑥.}

E splits if there exists 𝑆 ⊆ 𝐸 such that
span 𝑆 ∩ span 𝐸 ∖ 𝑆 = 0

Corollary: A uniqueness result that is stronger than Jennrich’s
(and Kruskal’s!)

More matroid theory for product tensors?

Splitting theorem

Splitting theorem [LP 2023]: Let 𝐸 = {𝑥/⊗𝑦/: 𝑎 ∈ [𝑛]}.

If
dimspan(𝐸) ≤ 𝑑Q

. + 𝑑W
. − 2

then 𝐸 splits. 𝑑Q
[.] = dimspan{𝑥', … , 𝑥.}

E splits if there exists 𝑆 ⊆ 𝐸 such that
span 𝑆 ∩ span 𝐸 ∖ 𝑆 = 0

Corollary: A uniqueness result that is stronger than Jennrich’s
(and Kruskal’s!)

More matroid theory for product tensors?

Splitting theorem

Splitting theorem [LP 2023]: Let 𝐸 = {𝑥/⊗𝑦/⊗ 𝑧/: 𝑎 ∈ [𝑛]}.

If

then 𝐸 splits.

dimspan 𝐸 ≤ 𝑑Q
. + 𝑑W

. + 𝑑Z
. − 3

E splits if there exists 𝑆 ⊆ 𝐸 such that
span 𝑆 ∩ span 𝐸 ∖ 𝑆 = 0

𝑑Q
[.] = dimspan{𝑥', … , 𝑥.}

Splitting theorem

Splitting theorem [LP 2023]: Let 𝐸 = {𝑥/⊗𝑦/⊗ 𝑧/: 𝑎 ∈ [𝑛]}.

If

then 𝐸 splits.

dimspan 𝐸 ≤ 𝑑Q
. + 𝑑W

. + 𝑑Z
. − 3

E splits if there exists 𝑆 ⊆ 𝐸 such that
span 𝑆 ∩ span 𝐸 ∖ 𝑆 = 0

Corollary: If

𝑛 ≤ 𝑑Q
. + 𝑑W

. + 𝑑Z
. − 2,

then 𝐸 splits.

𝑑Q
[.] = dimspan{𝑥', … , 𝑥.}

Splitting theorem

Splitting theorem [LP 2023]: Let 𝐸 = {𝑥/⊗𝑦/⊗ 𝑧/: 𝑎 ∈ [𝑛]}.

If

then 𝐸 splits.

dimspan 𝐸 ≤ 𝑑Q
. + 𝑑W

. + 𝑑Z
. − 3

E splits if there exists 𝑆 ⊆ 𝐸 such that
span 𝑆 ∩ span 𝐸 ∖ 𝑆 = 0

Corollary: If

𝑛 ≤ 𝑑Q
. + 𝑑W

. + 𝑑Z
. − 2,

then 𝐸 splits.

𝑑Q
[.] = dimspan{𝑥', … , 𝑥.}

Splitting theorem => Corollary: If 𝐸 is linearly independent, then it splits. Otherwise,

dimspan 𝐸 ≤ 𝑛 − 1 ≤ 𝑑Q
. + 𝑑W

. + 𝑑Z
. − 3, so 𝐸 splits by splitting theorem.

Splitting theorem

Splitting theorem [LP 2023]: Let 𝐸 = {𝑥/⊗𝑦/⊗ 𝑧/: 𝑎 ∈ [𝑛]}.

If

then 𝐸 splits.

Corollary: If 2𝑛 ≤ 𝑑Q
. + 𝑑W

. + 𝑑Z
. − 2, then for any other set of product

tensors 𝐸1 = {𝑥/1 ⊗𝑦/1 ⊗ 𝑧/1 : 𝑎 ∈ 𝑛 }, 𝐸 ∪ 𝐸′ splits.

dimspan 𝐸 ≤ 𝑑Q
. + 𝑑W

. + 𝑑Z
. − 3

E splits if there exists 𝑆 ⊆ 𝐸 such that
span 𝑆 ∩ span 𝐸 ∖ 𝑆 = 0

Corollary: If

𝑛 ≤ 𝑑Q
. + 𝑑W

. + 𝑑Z
. − 2,

then 𝐸 splits.

𝑑Q
[.] = dimspan{𝑥', … , 𝑥.}

Replaces Kruskal ranks with standard ranks

Recall the tensor decomposition setup…

We are handed a rank decomposition

… and want to control other rank decompositions

𝑇 = V
/∈[.]

𝑥/⊗𝑦/⊗ 𝑧/

𝑇 = V
/∈[.]

𝑥/1 ⊗𝑦/1 ⊗ 𝑧/1 .

Recall the tensor decomposition setup…

We are handed a rank decomposition

… and want to control other rank decompositions

Corollary: If 2𝑛 ≤ 𝑑Q
. + 𝑑W

. + 𝑑Z
. − 2, then for any other set of product

tensors 𝐸1 = {𝑥/1 ⊗𝑦/1 ⊗ 𝑧/1 : 𝑎 ∈ 𝑛 }, 𝐸 ∪ 𝐸′ splits.

Replaces Kruskal ranks with standard ranks

𝑇 = V
/∈[.]

𝑥/⊗𝑦/⊗ 𝑧/

𝑇 = V
/∈[.]

𝑥/1 ⊗𝑦/1 ⊗ 𝑧/1 .

Corollary => Kruskal generalization

Corollary [LP 2023]: If

2𝑛 ≤ 𝑑Q
[.] + 𝑑W

[.] + 𝑑Z
[.] − 2,

then for any other decomposition

there exist non-trivial subsets 𝑆, 𝑇 ⊆ 𝑛 such that

𝑑$
[&] = dimspan{𝑥!, … , 𝑥&}

𝑇 = ∑!∈[$] 𝑥!' ⊗𝑦!' ⊗𝑧!'

#
!∈/

𝑥!⊗𝑦!⊗𝑧! = #
!∈.

𝑥!' ⊗𝑦!' ⊗𝑧!'

𝑇 = #
!∈[$]

𝑥!⊗𝑦!⊗𝑧! ∈ 𝔽&! ⊗𝔽&" ⊗𝔽&# (1)

Poly time to check!

Corollary => Kruskal generalization

Corollary [LP 2023]: If

2𝑛 ≤ 𝑑Q
[.] + 𝑑W

[.] + 𝑑Z
[.] − 2,

then for any other decomposition

there exist non-trivial subsets 𝑆, 𝑇 ⊆ 𝑛 such that

𝑑$
[&] = dimspan{𝑥!, … , 𝑥&}

#
!∈/

𝑥!⊗𝑦!⊗𝑧! = #
!∈.

𝑥!' ⊗𝑦!' ⊗𝑧!'

By previous corollary, {𝑥!⊗𝑦!⊗𝑧!, 𝑥!' ⊗𝑦!' ⊗𝑧!' : 𝑎 ∈ 𝑛 } splits

Proof:

𝑇 = ∑!∈[$] 𝑥!' ⊗𝑦!' ⊗𝑧!'

𝑇 = #
!∈[$]

𝑥!⊗𝑦!⊗𝑧! ∈ 𝔽&! ⊗𝔽&" ⊗𝔽&# (1)

Poly time to check!

𝟎

𝟎 𝟎

Corollary [L-Petrov]: If

2𝑛 ≤ 𝑑Q
[.] + 𝑑W

[.] + 𝑑Z
[.] − 2,

then for any other decomposition

there exist non-trivial subsets 𝑆, 𝑅 ⊆ 𝑛 such that

𝑑Q
[.] = dimspan{𝑥', … , 𝑥.}

𝑇 = ∑/∈[.]𝑥/1 ⊗𝑦/1 ⊗ 𝑧/1

V
/∈b

𝑥/⊗𝑦/⊗ 𝑧/ = V
/∈4

𝑥/1 ⊗𝑦/1 ⊗ 𝑧/1

𝑇 = #
!∈[$]

𝑥!⊗𝑦!⊗𝑧! ∈ 𝔽&! ⊗𝔽&" ⊗𝔽&# (1)

Poly time to check!

Uniqueness

Theorem [LP 2023]: If for every subset 𝑆 ⊆ 𝑛 of size 𝑆 ≥ 2, it holds

that

2 𝑆 ≤ 𝑑EQ + 𝑑HQ + 𝑑IQ − 2,

then (1) is the unique rank decomposition of T.

𝑑Qb = dimspan{𝑥/: 𝑎 ∈ 𝑆}

𝑇 = #
!∈[$]

𝑥!⊗𝑦!⊗𝑧! ∈ 𝔽&! ⊗𝔽&" ⊗𝔽&# (1)

Uniqueness

Theorem [LP 2023]: If for every subset 𝑆 ⊆ 𝑛 of size 𝑆 ≥ 2, it holds

that

2 𝑆 ≤ 𝑑EQ + 𝑑HQ + 𝑑IQ − 2,

then (1) is the unique rank decomposition of T.

𝑑Qb = dimspan{𝑥/: 𝑎 ∈ 𝑆}

𝑇 = #
!∈[$]

𝑥!⊗𝑦!⊗𝑧! ∈ 𝔽&! ⊗𝔽&" ⊗𝔽&# (1)

Conclusion

Algorithms:
• Intersecting variety 𝑋 with subspace ↔ 𝑋, 𝑘 -decompositions
• Broad applications for different choices of 𝑋
• In particular, can decompose tensors of quadratically higher rank than Jennrich

Uniqueness:
• Splitting theorem “demystifies” Kruskal’s theorem
• More matroid theory for product tensors?

= + + …+

Algorithms and Uniqueness of Tensor Decompositions

Benjamin Lovitz
Northeastern University

UMass Boston Department of Mathematics
November 14, 2023

