Computing linear sections of varieties: quantum entanglement, tensor decompositions and beyond

Nathaniel Johnston ${ }^{1}$ Benjamin Lovitz ${ }^{2}$ Aravindan Vijayaraghavan ${ }^{3}$

1. Mount Allison University
2. NSF Postdoc, Northeastern University
3. Northwestern University

SIAM AG 2023

July 12, 2023

Northeastern
University

Registration and travel support for this presentation was provided by the Society for Industrial and Applied Mathematics.

Product tensors: $X_{\text {Sep }}=\left\{u \otimes v: u, v \in \mathbb{C}^{n}\right\} \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$

Problem: Given a basis for a linear subspace $U \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$, determine if U is entangled, i.e. if $U \cap X_{\text {Sep }}=\{0\}$.

$X_{\text {Sep }}$

Applications: Quantum Information

- Range criterion: For a density operator $\rho \in D\left(\mathbb{C}^{n} \otimes \mathbb{C}^{n}\right)$,
$\quad \operatorname{Im}(\rho)$ entangled $\Rightarrow \rho$ entangled
- Entangled subspaces can be used to construct entanglement witnesses and quantum error-correcting codes

Product tensors: $X_{\text {Sep }}=\left\{u \otimes v: u, v \in \mathbb{C}^{n}\right\} \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$

Problem: Given a basis for a linear subspace $U \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$, determine if U is entangled, i.e. if $U \cap X_{\text {Sep }}=\{0\}$.

U

Outline:

- Algorithm + complete hierarchy (Nullstellensatz)
- Extension to other varieties X
- Related algorithm to recover elements of $U \cap X_{\text {Sep }}$
- Application to tensor decompositions

Product tensors: $X_{\text {Sep }}=\left\{u \otimes v: u, v \in \mathbb{C}^{n}\right\} \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$
Problem: Given a basis for a linear subspace $U \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$, determine if U is entangled, i.e. if $U \cap X_{\text {Sep }}=\{0\}$.
[Barak et al 2019]: This is NP-Hard in the worst case.
[Barak et al 2019]: Best known algorithm takes $2^{\tilde{O}(\sqrt{n})}$ time.
[Classical AG, Parthasarathy 01]: $\operatorname{dim}(U)>(n-1)^{2} \Rightarrow U$ is not entangled
U generic and $\operatorname{dim}(U) \leq(n-1)^{2} \Rightarrow U$ is entangled
"Hay in a haystack problem"

Outline:

- Algorithm + complete hierarchy (Nullstellensatz)
- Extension to other varieties X
- Related algorithm to recover elements of $U \cap X_{\text {Sep }}$
- Applications to tensor decompositions

Algorithm for babies

Product tensors: $X_{\text {Sep }}=\left\{u \otimes v: u, v \in \mathbb{C}^{n}\right\} \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$
Problem: Given a basis for a linear subspace $U \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$, determine if U is entangled, i.e. if $U \cap X_{\text {Sep }}=\{0\}$.

Idea: Problem is difficult because it's non-linear

$$
\left(X_{\text {Sep }} \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n} \text { isn't a linear subspace }\right)
$$

Make it linear: Instead check if $U \cap \operatorname{Span}\left(X_{\text {Sep }}\right)=\{0\}$.
Doesn't work: $\operatorname{Span}\left(X_{\text {Sep }}\right)=\mathbb{C}^{n} \otimes \mathbb{C}^{n}$.
Lift it up: Let $X_{\text {Sep }}^{d}=\operatorname{Span}\left\{(u \otimes v)^{\otimes d}: u, v \in \mathbb{C}^{n}\right\}=S^{d}\left(\mathbb{C}^{n}\right) \otimes S^{d}\left(\mathbb{C}^{n}\right)$
Check if $U^{\otimes d} \cap X_{\text {Sep }}^{d}=\{0\}$.
Works extremely well already for $d=2$!

Algorithm for adults

Product tensors: $X_{\text {Sep }}=\left\{u \otimes v: u, v \in \mathbb{C}^{n}\right\} \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$
Problem: Given a basis for a linear subspace $U \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$, determine if U is entangled, i.e. if $U \cap X_{\text {Sep }}=\{0\}$.
Hilbert's Nullstellensatz:
$U \cap X=\{0\} \quad \Leftrightarrow \quad$ For some $d \in \mathbb{N}$ it holds that

$$
\begin{aligned}
& I(U)_{d}+I\left(X_{\text {Sep }}\right)_{d}=\mathbb{C}\left[x_{1,1}, \ldots, x_{n, n}\right]_{d} \\
& \Leftrightarrow \\
& S^{d}(U) \cap I\left(X_{\text {Sep }}\right)_{d}^{\perp}=\{0\} \\
& I\left(X_{\text {Sep }}\right)_{d}^{\perp} \xlongequal[X_{\text {Sep }}^{d}]{ } \Leftrightarrow \\
& U^{\otimes d} \cap X_{\text {Sep }}^{d}=\{0\}
\end{aligned}
$$

Product tensors: $X_{\text {Sep }}=\left\{u \otimes v: u, v \in \mathbb{C}^{n}\right\} \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$
Problem: Given a basis for a linear subspace $U \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$, determine if U is entangled, i.e. if $U \cap X_{\text {Sep }}=\{0\}$.

$$
X_{S e p}^{2}:=\operatorname{Span}\left\{(u \otimes v)^{\otimes 2}: u, v \in \mathbb{C}^{n}\right\}=S^{2}\left(\mathbb{C}^{n}\right) \otimes S^{2}\left(\mathbb{C}^{n}\right)
$$

Takes $\operatorname{poly}(n)$ time to check
Algorithm:
If $U^{\otimes 2} \cap X_{\text {Sep }}^{2}=\{0\}$, output U is entangled
Otherwise, output Fail
Correctness: $u \otimes v \in U \Rightarrow(u \otimes v)^{\otimes 2} \in U^{\otimes 2} \cap X_{\text {Sep }}^{2}$
\Rightarrow Algorithm outputs Fail.

Product tensors: $X_{\text {Sep }}=\left\{u \otimes v: u, v \in \mathbb{C}^{n}\right\} \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$
Problem: Given a basis for a linear subspace $U \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$, dotormino if $I I$ ic ontanolod io if $I I \cap X_{\sim} \quad-\{0\}$
Works-Extremely-Well Theorem [J V 22]:
U generic and $\operatorname{dim}(U) \leq \frac{1}{4}(n-1)^{2} \Rightarrow U^{\otimes 2} \cap X_{S e p}^{2}=\{0\}$.
Takes $\operatorname{poly}(n)$ time to check
Algorithm:
If $U^{\otimes 2} \cap X_{\text {Sep }}^{2}=\{0\}$, output U is entangled
Otherwise, output Fail
Correctness: $u \otimes v \in U \Rightarrow(u \otimes v)^{\otimes 2} \in U^{\otimes 2} \cap X_{\text {Sep }}^{2}$
\Rightarrow Algorithm outputs Fail.

Outline:

- Algorithm + complete hierarchy (Nullstellensatz)

Extension to other varieties X

- Related algorithm to recover elements of $U \cap X_{\text {Sep }}$
- Applications to tensor decompositions

Let $X \subseteq \mathbb{C}^{N}$ be a conic variety (for example, $X=X_{\text {Sep }} \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$)
Problem: Given a basis for a linear subspace $U \subseteq \mathbb{C}^{N}$, determine if U avoids X, i.e. if $U \cap X=\{0\}$.

$$
X^{d}:=\operatorname{Span}\left\{v^{\otimes d}: v \in X\right\}
$$

Algorithm d:
If $U^{\otimes d} \cap X^{d}=\{0\}$, output U avoids X
Otherwise, output Fail
Completeness [Hilbert]: For $d=2^{O(N)}$, Fail $\Leftrightarrow U$ intersects X

Derksen's proof (sketch) *A slightly weaker WEW Theorem appears in [JLV 22] with a different proof.

WEW Theorem [Derksen]*: If $I \subseteq \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$ is a homogeneous ideal and R is a non-negative integer such that

$$
\operatorname{dim} I_{d}^{\perp}<\binom{N-R+d}{d}
$$

then there exists an R-dimensional subspace $U \subseteq \mathbb{C}^{D}$ such that $U^{\otimes d} \cap I_{d}^{\perp}=\{0\}$.

Proof sketch: By a theorem of Galligo, after a linear change of coordinates wma $J:=\operatorname{lm}(I)$ is Borel-fixed with respect to the reverse lexicographic monomial order.
If $x_{R}^{d} \notin J_{d}$, then $J_{d} \subseteq\left\langle x_{1}, \ldots, x_{R-1}\right\rangle_{d}$. But then $\operatorname{dim}\left(I_{d}^{\perp}\right)=\operatorname{dim}\left(J_{d}^{\perp}\right)$

$$
\begin{aligned}
& \geq \operatorname{dim}\left(\mathbb{C}\left[x_{1}, \ldots, x_{N}\right]_{d} /\left\langle x_{1}, \ldots, x_{R-1}\right\rangle_{d}\right) \\
& =\binom{N-R+d}{d}, \text { a contradiction } .
\end{aligned}
$$

So $x_{R}^{d} \in J_{d}$. But this implies all monomials in x_{1}, \ldots, x_{R} of degree d lie in J.
It follows that $S^{d}(U) \cap I_{d}^{\perp}=\{0\}$ for $U=\operatorname{span}\left\{e_{1}, \ldots, e_{R}\right\}$.

Examples

 WEW Theorem［JLV 22］：For generic U of dimension $\operatorname{dim}(U) \leq$（0） it holds that $U^{\otimes d} \cap X^{d}=\{0\}$ ，for $d=$ 筑
Schmidt rank $\leq \boldsymbol{r}$ tensors

$X_{r}=\left\{v \in \mathbb{C}^{n} \otimes \mathbb{C}^{n}: \operatorname{Schmidt}-\operatorname{rank}(v) \leq r\right\}$

Product tensors \quad in－$X_{\text {Sep }}$－arable \leftrightarrow Completely entangled

$X_{\text {Sep }}=\left\{v_{1} \otimes \cdots \otimes v_{m}: v_{i} \in \mathbb{C}^{n}\right\}$

Biseparable tensors

$$
\text { in- } X_{B} \text {-arable } \leftrightarrow \text { Genuinely entangled }
$$

$X_{B}=\left\{v \in\left(\mathbb{C}^{n}\right)^{\otimes m}:\right.$ Some bipartition of v has rank 1$\}$

$$
\begin{aligned}
& \text { (20) }=\Omega_{r}\left(n^{2}\right) \\
& \text { 藘 }=r+1
\end{aligned}
$$

$$
\text { (2) } \sim(1 / 4) n^{m}
$$

$$
\text { 暘 }=2
$$

$$
\begin{aligned}
& \text { (2) } \sim(1 / 4) n^{m} \\
& \text { 蹴 }=2
\end{aligned}
$$

Slice rank 1 tensors

$X_{S}=\left\{v \in\left(\mathbb{C}^{n}\right)^{\otimes m}:\right.$ Some 1 v．s．rest bipartition of v has rank 1$\}$

$$
\begin{aligned}
& \text { (2) } \sim(1 / 4) n^{m} \\
& \text { 鼎 }=2
\end{aligned}
$$

Matrix product tensors of bond dimension $\leq \boldsymbol{r}$

$X_{M P S}=\left\{v \in\left(\mathbb{C}^{n}\right)^{\otimes m}:\right.$ Every left－right bipartition has rank $\left.\leq r\right\}$
（2）$=\Omega_{r}\left(n^{m}\right)$
积 $=r+1$

Examples

 WEW Theorem［JLV 22］：For generic U of dimension $\operatorname{dim}(U) \leq(0)$ it holds that $U^{\otimes d} \cap X^{d}=\{0\}$ ，for $d=$ 渻
Bisepara

Schmidt rank $\leq \boldsymbol{r}$ tensors
 $X_{r}=\left\{v \in \mathbb{C}^{n} \otimes \mathbb{C}^{n}: \operatorname{Schmidt-\operatorname {rank}(v)} \leq r\right\}$

Product tensors in－$X_{\text {Sep }}$－arable \leftrightarrow Completely entangled
$X_{\text {Sep }}=\left\{v_{1} \otimes \cdots \otimes v_{m}: v_{i} \in \mathbb{C}^{n}\right\}$
路 $=2$ Takeaway：Algorithm certifies entanglement of subspaces of dimension a constant multiple of the maximum possible
（2）$\sim(1 / 4) n^{m}$
（2）$=\Omega_{r}\left(n^{2}\right)$
藘 $=r+1$

Slice rank 1 tensors

$X_{S}=\left\{v \in\left(\mathbb{C}^{n}\right)^{\otimes m}\right.$ ：Some 1 v．s．rest bipartition of v has rank 1$\}$

$$
\begin{aligned}
& \text { (2) } \sim(1 / 4) n^{m} \\
& \text { 衫 }=2
\end{aligned}
$$

Matrix product tensors of bond dimension $\leq \boldsymbol{r}$

$X_{M P S}=\left\{v \in\left(\mathbb{C}^{n}\right)^{\otimes m}:\right.$ Every left－right bipartition has rank $\left.\leq r\right\}$

Outline:

- Algorithm + complete hierarchy (Nullstellensatz)
- Extension to other varieties X

Related algorithm to recover elements of $U \cap X_{\text {Sep }}$

- Applications to tensor decompositions

Suppose $U \subseteq \mathbb{C}^{N}$ has a basis $\left\{v_{1}, \ldots, v_{R}\right\}$ such that each $v_{i} \in X$.
Problem: Given some other basis $\left\{u_{1}, \ldots, u_{R}\right\}$ of U, recover $\left\{v_{1}, \ldots, v_{R}\right\}$ (up to scale).

Example: Jennrich's Algorithm: If $U^{\prime} \subseteq S^{d}\left(\mathbb{C}^{N}\right)$ is spanned by $\left\{v_{1}^{\otimes d}, \ldots, v_{R}^{\otimes d}\right\}$ with $\left\{v_{1}, \ldots, v_{R}\right\}$ linearly independent, then $\left\{v_{1}^{\otimes d}, \ldots, v_{R}^{\otimes d}\right\}$ can be recovered from any basis of U^{\prime} in $N^{o(d)}$ - time.

Jennrich's Algorithm:
Pick $T_{j} \in U^{\prime}, j=1,2$ at random, view these as maps $T_{j}:\left(\mathbb{C}^{N}\right)^{\otimes d-1} \rightarrow \mathbb{C}^{N}$
$T_{j}=\sum_{i=1}^{R} \alpha_{j, i} v_{i}\left(v_{i}^{t}\right)^{\otimes d-1} \quad T_{j}^{-1}=\sum_{i} \frac{1}{\alpha_{j, i}}\left(w_{i}\right)^{\otimes d-1} w_{i}^{t} \quad$ where $w_{i}^{t} v_{i^{\prime}}=\delta_{i, i^{\prime}}$
So $T_{1} T_{2}^{-1}=\sum_{i} \frac{\alpha_{1, i}}{\alpha_{2, i}} v_{i} w_{i}^{t} . \quad$ E-vectors $/ \mathrm{E}$-values of $T_{1} T_{2}^{-1}$ are $v_{i}, \frac{\alpha_{1, i}}{\alpha_{2, i}}$

Suppose $U \subseteq \mathbb{C}^{N}$ has a basis $\left\{v_{1}, \ldots, v_{R}\right\}$ such that each $v_{i} \in X$.
Works-Extremely-Well Theorem [J V 22]:
Pro If $d \geq 2, X$ is irreducible, cut out in degree d, and has no equations in degree $d-1$,
le). then (1) and (2) hold for generic $v_{1}, \ldots, v_{R} \in X$ as long as $R \leq \frac{\operatorname{dim}\left(I(X)_{d}\right)}{d!\binom{N+d-1}{d}}(N+d-1)$
Example: Jennrich's Algorithm: it $U \subseteq S^{"}\left(\mathbb{C}^{*}\right)$ IS spanned by $\left\{v_{1}, \ldots, v_{R}\right\}$ With $\left\{v_{1}, \ldots, v_{R}\right\}$ linearly independent, then $\left\{v_{1}^{\otimes d}, \ldots, v_{R}^{\otimes d}\right\}$ can be recovered from any basis of U^{\prime} in $N^{O(d)}$ - time.

Lifted Jennrich's Algorithm [JLV 2022]: Run Jennrich on $U^{\prime}=U^{\otimes d} \cap X^{d}$.

For this to work, need:

$$
s U^{\prime}
$$

1. $\left\{v_{1}^{\otimes d}, \ldots, v_{R}^{\otimes d}\right\}$ spans U^{\prime}.
2. $\left\{v_{1}, \ldots, v_{R}\right\}$ is linearly independent.

Suppose $U \subseteq \mathbb{C}^{N}$ has a basis $\left\{v_{1}, \ldots, v_{R}\right\}$ such that each $v_{i} \in X$

Works-Extremely-Well Theorem [J V 22]:

Pro if $d \geq 2, X$ is irreducible, cut out in degree d, and has no equations in degree $d-1$, then (1) and (2) hold for generic $v_{1}, \ldots, v_{R} \in X$ as long as $R \leq \frac{\operatorname{dim}\left(I(X)_{d}\right)}{d!\binom{N+d-1}{d}}(N+d-1)$
$\left\{v_{1}\right.$, Proof technique: Show that

$$
\begin{array}{lr}
& I(X)_{d}+I(U)_{d}=I\left(v_{1}, \ldots, v_{R}\right)_{d} \\
\text { for generic } v_{1}, \ldots, v_{R} \in X . & \text { This is equivalent to (1). }
\end{array}
$$

Lifted Jennrich's Algorithm [JLV 2022]: Run Jennrich on $U^{\prime}=U^{\otimes d} \cap X^{d}$.

Compare with earlier result:

$$
I(X)_{d}+I(U)_{d}=S^{d}\left(\mathbb{C}^{N}\right) \text { for generic } v_{1}, \ldots, v_{R} \in \mathbb{C}^{N}
$$

For this to work, need:

Similar WEW Theorems were claimed in

1. $\left\{v_{1}^{\otimes d}, \ldots, v_{R}^{\otimes d}\right\}$ spans U^{\prime}.
2. $\left\{v_{1}, \ldots, v_{R}\right\}$ is linearly independent.

Q: Clean algebraic proof?
[DL 06, DLCC 07] for the special case $X=X_{\text {Sep }}$, but their proofs are incorrect.

Outline:

- Algorithm + complete hierarchy (Nullstellensatz)
- Extension to other varieties X
- Related algorithm to recover elements of $U \cap X_{\text {Sep }}$

Applications to tensor decompositions

Application: (X, k)-decompositions

For $T \in V \otimes \mathbb{C}^{k}$, an (X, k)-decomposition is an expression

$$
T=\sum_{i=1}^{R} v_{i} \otimes z_{i} \in V \otimes \mathbb{C}^{k}
$$ where $v_{1}, \ldots, v_{R} \in X$

Example: When $X=X_{\text {Sep }} \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$, an (X, k)-decomposition is just a tensor decomposition.

Viewing T as a map $\mathbb{C}^{k} \rightarrow V$, each $v_{i} \in T\left(\mathbb{C}^{k}\right) \cap X$, so computing $T\left(\mathbb{C}^{k}\right) \cap X \leftrightarrow(X, k)$-decomposing T
(Assuming that $\left\{z_{1}, \ldots, z_{R}\right\}$ is linearly independent)

Corollary to WEW Theorem [JLV 22]: A generic tensor $T \in \mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \mathbb{C}^{k}$ with

$$
\operatorname{rank}(T) \leq \min \left\{\frac{1}{4}(n-1)^{2}, k\right\}
$$

has a unique rank decomposition, which is recovered in $\operatorname{POLY}(\mathrm{n})$-time by applying our algorithm to $T\left(\mathbb{C}^{k}\right)$.

In particular, a generic $n \times n \times n^{2}$ tensor of rank $\sim \frac{1}{4} n^{2}$ is recovered by algorithm.

Corollary to WEW Theorem [JUV 22]: A generic tensor $T \in\left(\mathbb{C}^{n}\right)^{\otimes m}$ of tensor rank $\operatorname{rank}(T)=O\left(n^{\lfloor m / 2\rfloor}\right)$
has a unique tensor rank decomposition, which is recovered in $n^{O(m)}$-time by applying our algorithm to $T\left(\left(\mathbb{C}^{n}\right)^{\otimes\lfloor m / 2\rfloor}\right)$.
(This is new when m is even. When m is odd you can just use Jennrich directly.)

Corollary to WEW Theorem [JLV 22]: A generic tensor $T \in \mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \mathbb{C}^{k} \quad$ of r-aided rank

$$
\mathrm{r}-\operatorname{aided} \operatorname{rank}(X) \leq \min \left\{\Omega_{r}\left(n^{2}\right), k\right\}
$$

has a unique tensor rank decomposition, which is recovered in $n^{O(r)}$-time by applying our algorithm to $T\left(\mathbb{C}^{k}\right)$.
$T=\sum_{i} v_{i} \otimes w_{i}$, where $v_{i} \in X_{r}$
r-aided rank $\Leftrightarrow(r, r, 1)$-multilinear rank

Conclusion

1. Complete hierarchies of linear systems to certify entanglement of a subspace. These work extremely well already at early levels.

Title: Complete hierarchy of linear systems for certifying quantum entanglement of subspaces
2. (Briefly mentioned) poly-time algorithms to find low-entanglement elements of a subspace. These also work extremely well.

Title: Computing linear sections of varieties: quantum entanglement, tensor decompositions and beyond
3. Extending symmetric extensions: Separability testing hierarchy of [DPS 04] extended to hierarchies for Schmidt number, biseparability, and X-arability. Title: TBD

Computing linear sections of varieties: quantum entanglement, tensor decompositions and beyond

Nathaniel Johnston ${ }^{1}$ Benjamin Lovitz ${ }^{2}$ Aravindan Vijayaraghavan ${ }^{3}$

1. Mount Allison University
2. NSF Postdoc, Northeastern University
3. Northwestern University

SIAM AG 2023

July 12, 2023

Northeastern
University

