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𝑋!"#

𝑈

Product tensors:   𝑋!"# = {𝑢 ⊗ 𝑣: 𝑢, 𝑣 ∈ ℂ$} ⊆ ℂ$⊗ℂ$

Problem: Given a basis for a linear subspace 𝑈 ⊆ ℂ$⊗ℂ$,
determine if 𝑈 is entangled, i.e. if 𝑈 ∩ 𝑋!"# = {0}.

Applications: Quantum Information

• Range criterion: For a density operator 
𝜌 ∈ 𝐷 ℂ!⊗ℂ! ,

Im(𝜌) entangled  ⇒ 𝜌 entangled

• Entangled subspaces can be used to 
construct entanglement witnesses and 
quantum error-correcting codes
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Problem: Given a basis for a linear subspace 𝑈 ⊆ ℂ$⊗ℂ$,
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Outline:

• Algorithm + complete hierarchy (Nullstellensatz)
• Extension to other varieties 𝑋
• Related algorithm to recover elements of 𝑈 ∩ 𝑋"#$
• Application to tensor decompositions



Product tensors: 𝑋!"# = {𝑢 ⊗ 𝑣: 𝑢, 𝑣 ∈ ℂ$} ⊆ ℂ$ ⊗ℂ$

Problem: Given a basis for a linear subspace 𝑈 ⊆ ℂ$ ⊗ℂ$ ,
determine if 𝑈 is entangled, i.e. if 𝑈 ∩ 𝑋!"# = {0}.

[Barak et al 2019]: This is NP-Hard in the worst case.

[Barak et al 2019]: Best known algorithm takes 2 %& ! time.

[Classical AG, Parthasarathy 01]: dim 𝑈 > 𝑛 − 1 ' ⇒ 𝑈 is not entangled

𝑈 generic   and      dim 𝑈 ≤ 𝑛 − 1 ' ⇒ 𝑈 is entangled

“Hay in a haystack problem”



Outline:

• Algorithm + complete hierarchy (Nullstellensatz)
• Extension to other varieties 𝑋
• Related algorithm to recover elements of 𝑈 ∩ 𝑋"#$
• Applications to tensor decompositions 



Algorithm for babies



Product tensors:   𝑋!"# = {𝑢 ⊗ 𝑣: 𝑢, 𝑣 ∈ ℂ$} ⊆ ℂ$⊗ℂ$

Problem: Given a basis for a linear subspace 𝑈 ⊆ ℂ$⊗ℂ$,
determine if 𝑈 is entangled, i.e. if 𝑈 ∩ 𝑋!"# = {0}.

Idea: Problem is difficult because it’s non-linear
(𝑋!"# ⊆ ℂ$ ⊗ℂ$ isn’t a linear subspace).

Make it linear: Instead check if 𝑈 ∩ Span 𝑋!"# = {0}.
Doesn’t work: Span 𝑋!"# = ℂ$ ⊗ℂ$ .

Lift it up: Let  𝑋%&'( = Span{ 𝑢 ⊗ 𝑣 ⊗(: 𝑢, 𝑣 ∈ ℂ$} = 𝑆( ℂ$ ⊗𝑆( ℂ$

Check if  𝑈⊗( ∩ 𝑋%&'( = {0}.
Works extremely well already for 𝑑 = 2!



Algorithm for adults



Product tensors:   𝑋!"# = {𝑢 ⊗ 𝑣: 𝑢, 𝑣 ∈ ℂ$} ⊆ ℂ$⊗ℂ$

Problem: Given a basis for a linear subspace 𝑈 ⊆ ℂ$⊗ℂ$,
determine if 𝑈 is entangled, i.e. if 𝑈 ∩ 𝑋!"# = {0}.

Hilbert’s Nullstellensatz:
𝑈 ∩ 𝑋 = {0} ⟺ For some 𝑑 ∈ ℕ it holds that

𝐼 𝑈 ( + 𝐼 𝑋)*+ ( = ℂ 𝑥,,,, … , 𝑥!,! (

⟺

𝑆((𝑈) ∩ 𝐼 𝑋"#$ (
. = {0}

⟺

𝑈⊗( ∩ 𝑋)*+( = {0}

𝐼 𝑋"#$ (
.
= 𝑋)*+(

Works extremely well already for 𝑑 = 2!



Product tensors:   𝑋!"# = {𝑢 ⊗ 𝑣: 𝑢, 𝑣 ∈ ℂ$} ⊆ ℂ$⊗ℂ$

Problem: Given a basis for a linear subspace 𝑈 ⊆ ℂ$⊗ℂ$,
determine if 𝑈 is entangled, i.e. if 𝑈 ∩ 𝑋!"# = {0}.

𝑋)*+' : = Span{ 𝑢 ⊗ 𝑣 ⊗': 𝑢, 𝑣 ∈ ℂ!} = 𝑆' ℂ! ⊗𝑆' ℂ!

Algorithm:
If 𝑈⊗& ∩ 𝑋!"#& = {0}, output 𝑈 is entangled
Otherwise, output Fail

Correctness: 𝑢 ⊗ 𝑣 ∈ 𝑈 ⇒ 𝑢⊗ 𝑣 ⊗& ∈ 𝑈⊗& ∩ 𝑋!"#&

⇒ Algorithm outputs Fail.

Takes poly(𝑛) time to check



Product tensors:   𝑋!"# = {𝑢 ⊗ 𝑣: 𝑢, 𝑣 ∈ ℂ$} ⊆ ℂ$⊗ℂ$

Problem: Given a basis for a linear subspace 𝑈 ⊆ ℂ$⊗ℂ$,
determine if 𝑈 is entangled, i.e. if 𝑈 ∩ 𝑋!"# = {0}.

𝑋)*+' : = Span{ 𝑢 ⊗ 𝑣 ⊗': 𝑢, 𝑣 ∈ ℂ!} = 𝑆' ℂ! ⊗𝑆' ℂ!

Algorithm:
If 𝑈⊗& ∩ 𝑋!"#& = {0}, output 𝑈 is entangled
Otherwise, output Fail

Correctness: 𝑢 ⊗ 𝑣 ∈ 𝑈 ⇒ 𝑢⊗ 𝑣 ⊗& ∈ 𝑈⊗& ∩ 𝑋!"#&

⇒ Algorithm outputs Fail.

Takes poly(𝑛) time to check

Works-Extremely-Well Theorem [JLV 22]:
𝑈 generic   and     dim 𝑈 ≤ ,

0 𝑛 − 1 ' ⇒ 𝑈⊗' ∩ 𝑋)*+' = {0}.



Outline:

• Algorithm + complete hierarchy (Nullstellensatz)
• Extension to other varieties 𝑋
• Related algorithm to recover elements of 𝑈 ∩ 𝑋"#$
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Let 𝑋 ⊆ ℂ' be a conic variety (for example,  𝑋 = 𝑋!"# ⊆ ℂ$⊗ℂ$)

Problem: Given a basis for a linear subspace 𝑈 ⊆ ℂ' ,
determine if 𝑈 avoids 𝑋, i.e. if 𝑈 ∩ 𝑋 = {0}.

𝑋(: = Span{𝑣⊗(: 𝑣 ∈ 𝑋}

Algorithm 𝑑:
If 𝑈⊗( ∩ 𝑋( = {0}, output 𝑈 avoids 𝑋
Otherwise, output Fail

Completeness [Hilbert]: For 𝑑 = 2) ' ,     Fail     ⇔ 𝑈 intersects   𝑋

Takes 𝑁& ( time to check
𝑋

𝑈



Derksen’s proof (sketch)
WEW Theorem [Derksen]*: If 𝐼 ⊆ ℂ[𝑥*, … , 𝑥+] is a homogeneous ideal and 𝑅 is a 
non-negative integer such that

dim 𝐼(, <
𝑁 − 𝑅 + 𝑑

𝑑
,

then there exists an 𝑅-dimensional subspace 𝑈 ⊆ ℂ- such that 𝑈⊗( ∩ 𝐼(, = {0}.

Proof sketch: By a theorem of Galligo, after a linear change of coordinates wma 𝐽 ≔ lm(𝐼) is 
Borel-fixed with respect to the reverse lexicographic monomial order.

If 𝑥1( ∉ 𝐽(, then 𝐽( ⊆ 𝑥,, … , 𝑥12, (. But then dim 𝐼(. = dim 𝐽(.

≥ dim (ℂ 𝑥,, … , 𝑥3 (/ 𝑥,, … , 𝑥12, ()
= 3214(

( , a contradiction.
So 𝑥1( ∈ 𝐽(. But this implies all monomials in 𝑥,, … , 𝑥1 of degree 𝑑 lie in 𝐽.
It follows that 𝑆( 𝑈 ∩ 𝐼(. = {0} for 𝑈 = span{𝑒,, … , 𝑒1}.

*A slightly weaker WEW Theorem appears in 
[JLV 22] with a different proof.



Examples
Schmidt rank ≤ 𝒓 tensors
𝑋5 = {𝑣 ∈ ℂ!⊗ℂ!: Schmidt−rank 𝑣 ≤ 𝑟}

Product tensors
𝑋"#$ = {𝑣,⊗⋯⊗𝑣6: 𝑣7 ∈ ℂ!}

Biseparable tensors 
𝑋8 = {𝑣 ∈ ℂ! ⊗6: Some bipartition of 𝑣 has rank 1}

Slice rank 1 tensors
𝑋) = {𝑣 ∈ ℂ! ⊗6: Some 1 v.s. rest bipartition of 𝑣 has rank 1}

Matrix product tensors of bond dimension ≤ 𝒓
𝑋9:) = {𝑣 ∈ ℂ! ⊗6: Every left-right bipartition has rank ≤ 𝑟}

= Ω5 𝑛'
= 𝑟 + 1

~(1/4)𝑛6
= 2

~(1/4)𝑛6
= 2

~ 1/4 𝑛6
= 2

= Ω5 𝑛6
= 𝑟 + 1

WEW Theorem [JLV 22]: For generic 𝑈 of dimension dim 𝑈 ≤
it holds that 𝑈⊗( ∩ 𝑋( = {0}, for 𝑑 =

in-𝑋!-arable ↔ Genuinely entangled

in-𝑋"#$-arable ↔ Completely entangled



Examples
Schmidt rank ≤ 𝒓 tensors
𝑋5 = {𝑣 ∈ ℂ!⊗ℂ!: Schmidt−rank 𝑣 ≤ 𝑟}

Product tensors
𝑋"#$ = {𝑣,⊗⋯⊗𝑣6: 𝑣7 ∈ ℂ!}

Biseparable tensors 
𝑋8 = {𝑣 ∈ ℂ! ⊗6: Some bipartition of 𝑣 has rank 1}

Slice rank 1 tensors
𝑋) = {𝑣 ∈ ℂ! ⊗6: Some 1 v.s. rest bipartition of 𝑣 has rank 1}

Matrix product tensors of bond dimension ≤ 𝒓
𝑋9:) = {𝑣 ∈ ℂ! ⊗6: Every left-right bipartition has rank ≤ 𝑟}

= Ω5 𝑛'
= 𝑟 + 1

~(1/4)𝑛6
= 2

~(1/4)𝑛6
= 2

~ 1/4 𝑛6
= 2

= Ω5 𝑛6
= 𝑟 + 1

in-𝑋!-arable ↔ Genuinely entangled

in-𝑋"#$-arable ↔ Completely entangled

Takeaway: Algorithm certifies entanglement of subspaces 
of dimension a constant multiple of the maximum possible 
in polynomial time.

WEW Theorem [JLV 22]: For generic 𝑈 of dimension dim 𝑈 ≤
it holds that 𝑈⊗( ∩ 𝑋( = {0}, for 𝑑 =



Outline:

• Algorithm + complete hierarchy (Nullstellensatz)
• Extension to other varieties 𝑋
• Related algorithm to recover elements of 𝑈 ∩ 𝑋"#$
• Applications to tensor decompositions 



Suppose 𝑈 ⊆ ℂ+ has a basis {𝑣*, … , 𝑣.} such that each 𝑣/ ∈ 𝑋.

Problem: Given some other basis {𝑢*, … , 𝑢.} of 𝑈, recover {𝑣*, … , 𝑣.} (up to scale).

Example: Jennrich’s Algorithm: If 𝑈′ ⊆ 𝑆((ℂ+) is spanned by {𝑣*
⊗( , … , 𝑣.

⊗(} with 
{𝑣*, … , 𝑣.} linearly independent, then {𝑣*

⊗( , … , 𝑣.
⊗(} can be recovered from any 

basis of 𝑈′ in 𝑁0 ( - time.

Jennrich’s Algorithm:
Pick 𝑇1 ∈ 𝑈′ ,   𝑗 = 1,2 at random,     view these as maps      𝑇1: ℂ+ ⊗(2* → ℂ+

𝑇1 = ∑/3*. 𝛼1,/𝑣/ 𝑣/5
⊗(2*

𝑇12* = ∑/
*
6!,#

𝑤/ ⊗(2*𝑤/5 where 𝑤/5𝑣/$ = 𝛿/,/$

So 𝑇*𝑇72* = ∑/
6%,#
6&,#

𝑣/𝑤/5.     E-vectors / E-values of   𝑇*𝑇72* are    𝑣/ ,  6%,#
6&,#

Distinct for different 𝑖



Suppose 𝑈 ⊆ ℂ+ has a basis {𝑣*, … , 𝑣.} such that each 𝑣/ ∈ 𝑋.

Problem: Given some other basis {𝑢*, … , 𝑢.} of 𝑈, recover {𝑣*, … , 𝑣.} (up to scale).

Example: Jennrich’s Algorithm: If 𝑈′ ⊆ 𝑆((ℂ+) is spanned by {𝑣*
⊗( , … , 𝑣.

⊗(} with 
{𝑣*, … , 𝑣.} linearly independent, then {𝑣*

⊗( , … , 𝑣.
⊗(} can be recovered from any 

basis of 𝑈′ in 𝑁0 ( - time.

Lifted Jennrich’s Algorithm [JLV 2022]: Run Jennrich on  𝑈8 = 𝑈⊗( ∩ 𝑋( .

For this to work, need:

1. {𝑣*
⊗( , … , 𝑣.

⊗(} spans 𝑈′.
2. {𝑣*, … , 𝑣.} is linearly independent.

𝑣⊗( ∈ 𝑈= ⟺ 𝑣 ∈ 𝑈 ∩ 𝑋

Works-Extremely-Well Theorem [JLV 22]: 
If 𝑑 ≥ 2, 𝑋 is irreducible, cut out in degree 𝑑, and has no equations in degree 𝑑 − 1, 
then (1) and (2) hold for generic 𝑣,, … , 𝑣1 ∈ 𝑋 as long as 𝑅 ≤ >?@ A B !

(! "#!$%!
𝑁 + 𝑑 − 1

Generalizes FOOBI algorithm [DLCC ‘07]



Suppose 𝑈 ⊆ ℂ+ has a basis {𝑣*, … , 𝑣.} such that each 𝑣/ ∈ 𝑋.

Problem: Given some other basis {𝑢*, … , 𝑢.} of 𝑈, recover {𝑣*, … , 𝑣.} (up to scale).

Example: Jennrich’s Algorithm: If 𝑈′ ⊆ 𝑆((ℂ$) has a basis {𝑣*
⊗( , … , 𝑣.

⊗(} with 
{𝑣*, … , 𝑣.} linearly independent, then {𝑣*

⊗( , … , 𝑣.
⊗(} can be recovered from any 

basis of 𝑈′ in 𝑛0 ( - time.

Lifted Jennrich’s Algorithm [JLV 2022]: Run Jennrich on  𝑈8 = 𝑈⊗( ∩ 𝑋( .

For this to work, need:

1. {𝑣*
⊗( , … , 𝑣.

⊗(} spans 𝑈′.
2. {𝑣*, … , 𝑣.} is linearly independent.

𝑣⊗( ∈ 𝑈= ⟺ 𝑣 ∈ 𝑈 ∩ 𝑋

Works-Extremely-Well Theorem [JLV 22]: 
If 𝑑 ≥ 2, 𝑋 is irreducible, cut out in degree 𝑑, and has no equations in degree 𝑑 − 1, 
then (1) and (2) hold for generic 𝑣,, … , 𝑣1 ∈ 𝑋 as long as 𝑅 ≤ >?@ A B !

(! "#!$%!
𝑁 + 𝑑 − 1

Proof technique: Show that
𝐼 𝑋 ( + 𝐼 𝑈 ( = 𝐼 𝑣,, … , 𝑣1 (

for generic 𝑣,, … , 𝑣1 ∈ 𝑋. This is equivalent to (1).

Compare with earlier result:
𝐼 𝑋 ( + 𝐼 𝑈 ( = 𝑆((ℂ3) for generic 𝑣,, … , 𝑣1 ∈ ℂ3

Similar WEW Theorems were claimed in 
[DL 06, DLCC 07] for the special case      
𝑋 = 𝑋"#$, but their proofs are incorrect.Q: Clean algebraic proof?
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Application: 𝑋, 𝑘 -decompositions

For 𝑇 ∈ 𝑉 ⊗ ℂD, an 𝑋, 𝑘 -decomposition is an expression

where 𝑣,, … , 𝑣1 ∈ 𝑋

Example: When 𝑋 = 𝑋"#$ ⊆ ℂ!⊗ℂ!, an 𝑋, 𝑘 -decomposition is just a tensor 
decomposition.

Viewing 𝑇 as a map ℂD → 𝑉,   each 𝑣7 ∈ 𝑇 ℂD ∩ 𝑋, 
so computing 𝑇 ℂD ∩ 𝑋 ↔ 𝑋, 𝑘 -decomposing 𝑇

𝑇 =;
!"#

$

𝑣!⊗𝑧! ∈ 𝑉 ⊗ ℂ%

(Assuming that {𝑧,, … , 𝑧1} is linearly independent)



Corollary to WEW Theorem [JLV 22]: A generic tensor        
𝑇 ∈ ℂ)⊗ℂ)⊗ℂ* with

rank 𝑇 ≤ min{
1
4
𝑛 − 1 +, 𝑘}

has a unique rank decomposition, which is recovered in 
POLY(n)-time by applying our algorithm to 𝑇 ℂ* .

In particular, a generic 𝑛×𝑛×𝑛& tensor of rank ∼ *
+
𝑛& is recovered 

by algorithm.



Corollary to WEW Theorem [JLV 22]: A generic tensor
𝑇 ∈ ℂ) ⊗- of tensor rank

rank 𝑇 = 𝑂(𝑛⌊-/+⌋)
has a unique tensor rank decomposition, which is recovered 
in 𝑛1 - -time by applying our algorithm to 𝑇 ℂ) ⊗⌊-/+⌋ .

(This is new when 𝑚 is even. When 𝑚 is odd you can just use 
Jennrich directly.)



Corollary to WEW Theorem [JLV 22]: A generic tensor
𝑇 ∈ ℂ)⊗ℂ)⊗ℂ* of r-aided rank

r − aided rank(𝑋) ≤ min{Ω2 𝑛+ , 𝑘}

has a unique tensor rank decomposition, which is recovered in 
𝑛1 2 -time by applying our algorithm to 𝑇 ℂ* .

𝑇 = ∑3 𝑣3 ⊗𝑤3 , where  𝑣3 ∈ 𝑋2

𝑟-aided rank ⟺ 𝑟, 𝑟, 1 -multilinear rank



Conclusion

1. Complete hierarchies of linear systems to certify entanglement of a 
subspace. These work extremely well already at early levels.

Title: Complete hierarchy of linear systems for certifying quantum entanglement of subspaces

2. (Briefly mentioned) poly-time algorithms to find low-entanglement elements 
of a subspace. These also work extremely well.

Title: Computing linear sections of varieties: quantum entanglement, tensor decompositions and beyond

3. Extending symmetric extensions: Separability testing hierarchy of [DPS 04] 
extended to hierarchies for Schmidt number, biseparability, and 𝑋-arability.  

Title: TBD
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