Computing linear sections of varieties: quantum entanglement, tensor decompositions and beyond

Nathaniel Johnston¹

Benjamin Lovitz² Aravindan Vijayaraghavan³

- 1. Mount Allison University
- 2. NSF Postdoc, Northeastern University
 - 3. Northwestern University

SIAM AG 2023

July 12, 2023

Registration and travel support for this presentation was provided by the Society for Industrial and Applied Mathematics.

Product tensors: $X_{\text{Sep}} = \{ u \otimes v : u, v \in \mathbb{C}^n \} \subseteq \mathbb{C}^n \otimes \mathbb{C}^n$

<u>Problem</u>: Given a basis for a linear subspace $U \subseteq \mathbb{C}^n \otimes \mathbb{C}^n$, determine if U is entangled, i.e. if $U \cap X_{Sep} = \{0\}$.

Applications: Quantum Information

- Range criterion: For a density operator $\rho \in D(\mathbb{C}^n \otimes \mathbb{C}^n),$ $\operatorname{Im}(\rho)$ entangled $\Rightarrow \rho$ entangled
- Entangled subspaces can be used to construct entanglement witnesses and quantum error-correcting codes

Product tensors: $X_{\text{Sep}} = \{u \otimes v: u, v \in \mathbb{C}^n\} \subseteq \mathbb{C}^n \otimes \mathbb{C}^n$

<u>Problem</u>: Given a basis for a linear subspace $U \subseteq \mathbb{C}^n \otimes \mathbb{C}^n$, determine if U is entangled, i.e. if $U \cap X_{Sep} = \{0\}$.

Outline:

X_{Sep}

- Algorithm + complete hierarchy (Nullstellensatz)
- Extension to other varieties *X*
- Related algorithm to recover elements of $U \cap X_{Sep}$
- Application to tensor decompositions

Product tensors: $X_{\text{Sep}} = \{u \otimes v: u, v \in \mathbb{C}^n\} \subseteq \mathbb{C}^n \otimes \mathbb{C}^n$

<u>Problem</u>: Given a basis for a linear subspace $U \subseteq \mathbb{C}^n \otimes \mathbb{C}^n$, determine if U is entangled, i.e. if $U \cap X_{Sep} = \{0\}$.

[Barak et al 2019]: This is NP-Hard in the worst case.

[Barak et al 2019]: Best known algorithm takes $2^{\tilde{O}(\sqrt{n})}$ time.

[Classical AG, Parthasarathy 01]: dim $(U) > (n-1)^2 \Rightarrow U$ is not entangled

U generic and $\dim(U) \le (n-1)^2 \Rightarrow U$ is entangled

"Hay in a haystack problem"

Outline:

- Algorithm + complete hierarchy (Nullstellensatz)
- Extension to other varieties X
- Related algorithm to recover elements of $U \cap X_{Sep}$
- Applications to tensor decompositions

Algorithm for babies

Product tensors: $X_{\text{Sep}} = \{u \otimes v: u, v \in \mathbb{C}^n\} \subseteq \mathbb{C}^n \otimes \mathbb{C}^n$

<u>Problem</u>: Given a basis for a linear subspace $U \subseteq \mathbb{C}^n \otimes \mathbb{C}^n$, determine if U is entangled, i.e. if $U \cap X_{Sep} = \{0\}$.

Idea: Problem is difficult because it's non-linear

 $(X_{\text{Sep}} \subseteq \mathbb{C}^n \otimes \mathbb{C}^n \text{ isn't a linear subspace}).$

<u>Make it linear</u>: Instead check if $U \cap \text{Span}(X_{\text{Sep}}) = \{0\}$. **Doesn't work**: $\text{Span}(X_{\text{Sep}}) = \mathbb{C}^n \otimes \mathbb{C}^n$.

<u>Lift it up</u>: Let $X_{Sep}^d = \text{Span}\{(u \otimes v)^{\otimes d}: u, v \in \mathbb{C}^n\} = S^d(\mathbb{C}^n) \otimes S^d(\mathbb{C}^n)$ Check if $U^{\otimes d} \cap X_{Sep}^d = \{0\}.$

Works extremely well already for d = 2!

Algorithm for adults

Product tensors: $X_{\text{Sep}} = \{u \otimes v: u, v \in \mathbb{C}^n\} \subseteq \mathbb{C}^n \otimes \mathbb{C}^n$

<u>Problem</u>: Given a basis for a linear subspace $U \subseteq \mathbb{C}^n \otimes \mathbb{C}^n$, determine if U is entangled, i.e. if $U \cap X_{Sep} = \{0\}$.

Hilbert's Nullstellensatz:

$$U \cap X = \{0\} \iff$$
 For some $d \in \mathbb{N}$ it holds that
 $I(U)_d + I(X_{Sep})_d = \mathbb{C}[x_{1,1}, \dots, x_{n,n}]_d$

$$\Leftrightarrow$$

$$S^{d}(U) \cap I(X_{\text{Sep}})_{d}^{\perp} = \{0\}$$

$$I(X_{\text{Sep}})_{d}^{\perp} = X_{Sep}^{d} \iff$$

$$U^{\otimes d} \cap X_{Sep}^{d} = \{0\}$$

Works extremely well already for d = 2!

Product tensors: $X_{\text{Sep}} = \{ u \otimes v : u, v \in \mathbb{C}^n \} \subseteq \mathbb{C}^n \otimes \mathbb{C}^n$

Problem: Given a basis for a linear subspace $U \subseteq \mathbb{C}^n \otimes \mathbb{C}^n$, determine if U is entangled, i.e. if $U \cap X_{Sep} = \{0\}$.

$$X_{Sep}^2 := \operatorname{Span}\{(u \otimes v)^{\otimes 2} : u, v \in \mathbb{C}^n\} = S^2(\mathbb{C}^n) \otimes S^2(\mathbb{C}^n)$$

Takes poly(n) time to check

<u>Algorithm:</u> If $U^{\otimes 2} \cap X_{\text{Sep}}^2 = \{0\}$, output U is entangled Otherwise, output Fail

<u>Correctness</u>: $u \otimes v \in U \Rightarrow (u \otimes v)^{\otimes 2} \in U^{\otimes 2} \cap X^2_{Sep}$ \Rightarrow Algorithm outputs Fail. **Product tensors:** $X_{\text{Sep}} = \{ u \otimes v : u, v \in \mathbb{C}^n \} \subseteq \mathbb{C}^n \otimes \mathbb{C}^n$

Problem: Given a basis for a linear subspace $U \subseteq \mathbb{C}^n \otimes \mathbb{C}^n$, determine if II is entangled i.e. if $II \cap X_{a} = \{0\}$ Works-Extremely-Well Theorem [JLV 22]: U generic and $\dim(U) \leq \frac{1}{4}(n-1)^2 \Rightarrow U^{\otimes 2} \cap X_{Sep}^2 = \{0\}.$ Takes poly(n) time to check <u>Algorithm:</u> If $U^{\otimes 2} \cap X_{\text{Sep}}^2 = \{0\}$, output U is entangled Otherwise, output Fail <u>Correctness</u>: $u \otimes v \in U \Rightarrow (u \otimes v)^{\otimes 2} \in U^{\otimes 2} \cap X_{Sep}^2$

 \Rightarrow Algorithm outputs Fail.

Outline:

- Algorithm + complete hierarchy (Nullstellensatz)
- Extension to other varieties X
- Related algorithm to recover elements of $U \cap X_{Sep}$
- Applications to tensor decompositions

Let $X \subseteq \mathbb{C}^N$ be a conic variety (for example, $X = X_{\text{Sep}} \subseteq \mathbb{C}^n \otimes \mathbb{C}^n$)

<u>Problem</u>: Given a basis for a linear subspace $U \subseteq \mathbb{C}^N$, determine if U avoids X, i.e. if $U \cap X = \{0\}$.

$$X^d := \operatorname{Span}\{v^{\otimes d}: v \in X\}$$

<u>Algorithm d:</u> If $U^{\otimes d} \cap X^d = \{0\}$, output U avoids XOtherwise, output Fail

<u>Completeness [Hilbert]</u>: For $d = 2^{O(N)}$, Fail \Leftrightarrow U intersects X

Derksen's proof (sketch)

*A slightly weaker WEW Theorem appears in [JLV 22] with a different proof.

<u>WEW Theorem [Derksen]*:</u> If $I \subseteq \mathbb{C}[x_1, \dots, x_N]$ is a homogeneous ideal and R is a non-negative integer such that

$$\dim I_d^\perp < \binom{N-R+d}{d},$$

then there exists an *R*-dimensional subspace $U \subseteq \mathbb{C}^D$ such that $U^{\otimes d} \cap I_d^{\perp} = \{0\}$.

Proof sketch: By a theorem of Galligo, after a linear change of coordinates wma $J \coloneqq lm(I)$ is **Borel-fixed** with respect to the reverse lexicographic monomial order.

If $x_R^d \notin J_d$, then $J_d \subseteq \langle x_1, ..., x_{R-1} \rangle_d$. But then $\dim(I_d^{\perp}) = \dim(J_d^{\perp})$ $\geq \dim(\mathbb{C}[x_1, ..., x_N]_d / \langle x_1, ..., x_{R-1} \rangle_d)$ $= \binom{N-R+d}{d}$, a contradiction. So $x_R^d \in J_d$. But this implies all monomials in $x_1, ..., x_R$ of degree d lie in J. It follows that $S^d(U) \cap I_d^{\perp} = \{0\}$ for $U = \operatorname{span}\{e_1, ..., e_R\}$.

Examples	WEW Theorem [JLV 22]: For generic U o it holds that $U^{\bigotimes d} \cap X^d$ =	f dimension dim(U) $\leq \bigcirc$ = {0}, for $d = \bigstar$
Schmidt rank $\leq r$ tens $X_r = \{ v \in \mathbb{C}^n \otimes \mathbb{C}^n : S \in \mathbb{C}^n \}$	ors $chmidt-rank(v) \le r$	
Product tensors in- $X_{\text{Sep}} = \{v_1 \otimes \cdots \otimes v_n\}$	$\mathcal{N}_{\mathrm{Sep}}$ -arable \leftrightarrow Completely entangled $_n: \mathcal{V}_i \in \mathbb{C}^n$	
Biseparable tensors $X_B = \{ v \in (\mathbb{C}^n)^{\bigotimes m} : Set \}$	in- X_B -arable \leftrightarrow Genuinely entangled ome bipartition of v has rank 1}	$ \widehat{\otimes} \sim (1/4)n^m $
Slice rank 1 tensors $X_S = \{ v \in (\mathbb{C}^n)^{\bigotimes m} : Sc \}$	ome 1 v.s. rest bipartition of v has rank 1}	$ \widehat{\otimes} \sim (1/4)n^m $ $ \widehat{\otimes} = 2 $
Matrix product tensor $X_{MPS} = \{ v \in (\mathbb{C}^n)^{\otimes m} \}$	s of bond dimension $\leq r$: Every left-right bipartition has rank $\leq r$ }	

<u>WEW Theorem [JLV 22]</u>: For generic U of dimension dim $(U) \leq Q$ Examples it holds that $U^{\otimes d} \cap X^d = \{0\}$, for $d = \overset{\leftrightarrow}{\mathbb{R}}$ Schmidt rank $\leq r$ tensors $\langle \Omega_{\mathcal{O}} \rangle = \Omega_r(n^2)$ $\frac{1}{2}$ = r + 1 $X_r = \{v \in \mathbb{C}^n \otimes \mathbb{C}^n : \text{Schmidt}-\text{rank}(v) \le r\}$ **Product tensors** in- X_{Sep} -arable \leftrightarrow Completely entangled $(2) \sim (1/4)n^m$ 案=2 $X_{\text{Sep}} = \{v_1 \otimes \cdots \otimes v_m : v_i \in \mathbb{C}^n\}$ Bisepara Takeaway: Algorithm certifies entanglement of subspaces $X_B = \{v \text{ of dimension a constant multiple of the maximum possible in polynomial time.} \}$ n^m Slice rank 1 tensors $\overset{()}{\searrow} \sim (1/4)n^m$ $X_{S} = \{v \in (\mathbb{C}^{n})^{\otimes m}: \text{Some 1 v.s. rest bipartition of } v \text{ has rank 1} \}$ Matrix product tensors of bond dimension $\leq r$ $\langle \Omega_{r} \rangle = \Omega_{r}(n^{m})$ $X_{MPS} = \{v \in (\mathbb{C}^n)^{\otimes m} : \text{Every left-right bipartition has rank} \leq r\}$ = r + 1

Outline:

- Algorithm + complete hierarchy (Nullstellensatz)
- Extension to other varieties *X*
- Related algorithm to recover elements of $U \cap X_{Sep}$
- Applications to tensor decompositions

Suppose $U \subseteq \mathbb{C}^N$ has a basis $\{v_1, \dots, v_R\}$ such that each $v_i \in X$.

<u>Problem</u>: Given some other basis $\{u_1, \dots, u_R\}$ of U, recover $\{v_1, \dots, v_R\}$ (up to scale).

Example: Jennrich's Algorithm: If $U' \subseteq S^d(\mathbb{C}^N)$ is spanned by $\{v_1^{\otimes d}, \dots, v_R^{\otimes d}\}$ with $\{v_1, \dots, v_R\}$ linearly independent, then $\{v_1^{\otimes d}, \dots, v_R^{\otimes d}\}$ can be recovered from any basis of U' in $N^{O(d)}$ - time.

Jennrich's Algorithm:

Pick $T_j \in U'$, j = 1,2 at random, view these as maps $T_j: (\mathbb{C}^N)^{\otimes d-1} \to \mathbb{C}^N$ $T_j = \sum_{i=1}^R \alpha_{j,i} v_i (v_i^t)^{\otimes d-1}$ $T_j^{-1} = \sum_i \frac{1}{\alpha_{j,i}} (w_i)^{\otimes d-1} w_i^t$ where $w_i^t v_{i'} = \delta_{i,i'}$ So $T_1 T_2^{-1} = \sum_i \frac{\alpha_{1,i}}{\alpha_{2,i}} v_i w_i^t$. E-vectors / E-values of $T_1 T_2^{-1}$ are v_i , $\frac{\alpha_{1,i}}{\alpha_{2,i}}$ Distinct for different i Suppose $U \subseteq \mathbb{C}^N$ has a basis $\{v_1, \dots, v_R\}$ such that each $v_i \in X$.

Works-Extremely-Well Theorem [JLV 22]:

Pro If $d \ge 2$, X is irreducible, cut out in degree d, and has no equations in degree d - 1, le). then (1) and (2) hold for generic $v_1, ..., v_R \in X$ as long as $R \le \frac{\dim(I(X)_d)}{d!\binom{N+d-1}{d}}(N+d-1)$

Example: Jennrich's Algorithm: If $U \subseteq S^{\alpha}(\mathbb{C}^n)$ is spanned by $\{v_1^{\otimes n}, \dots, v_R^{\otimes n}\}$ with $\{v_1, \dots, v_R\}$ linearly independent, then $\{v_1^{\otimes d}, \dots, v_R^{\otimes d}\}$ can be recovered from any basis of U' in $N^{O(d)}$ - time.

Lifted Jennrich's Algorithm [JLV 2022]: Run Jennrich on $U' = U^{\otimes d} \cap X^d$.

$$v^{\bigotimes d} \in U' \iff v \in U \cap X$$

For this to work, need:

1.
$$\{v_1^{\otimes d}, \dots, v_R^{\otimes d}\}$$
 spans U' .

Generalizes FOOBI algorithm [DLCC '07]

2. $\{v_1, \dots, v_R\}$ is linearly independent.

Suppose $U \subseteq \mathbb{C}^N$ has a basis $\{v_1, \dots, v_R\}$ such that each $v_i \in X$.

Works-Extremely-Well Theorem [JLV 22]:

Pro If $d \ge 2$, X is irreducible, cut out in degree d, and has no equations in degree d - 1, then (1) and (2) hold for generic $v_1, \dots, v_R \in X$ as long as $R \le \frac{\dim(I(X)_d)}{d!\binom{N+d-1}{d}}(N+d-1)$

<u>Exa</u>

bas

 $\{v_1 \mid Proof technique: Show that$

for generic $v_1, \ldots, v_R \in X$.

$$I(X)_d + I(U)_d = I(v_1, \dots, v_R)_d$$

This is equivalent to (1).

Lifted Jennrich's Algorithm [JLV 2022]: Run Jennrich on $U' = U^{\otimes d} \cap X^d$.

For this to work, need:

$$\frac{\text{Compare with earlier result:}}{I(X)_d + I(U)_d} = S^d(\mathbb{C}^N) \text{ for generic } v_1, \dots, v_R \in \mathbb{C}^d$$

1.
$$\{v_1^{\otimes d}, \dots, v_R^{\otimes d}\}$$
 spans U' .

2. $\{v_1, \dots, v_R\}$ is linearly independent. Q: Clean algebraic proof? Similar WEW Theorems were claimed in [DL 06, DLCC 07] for the special case $X = X_{Sep}$, but their proofs are incorrect.

le).

Outline:

- Algorithm + complete hierarchy (Nullstellensatz)
- Extension to other varieties *X*
- Related algorithm to recover elements of $U \cap X_{Sep}$
 - Applications to tensor decompositions

Application: (X, k)-decompositions

For $T \in V \otimes \mathbb{C}^k$, an (X, k)-decomposition is an expression

$$T = \sum_{i=1}^{R} v_i \otimes z_i \in V \otimes \mathbb{C}^k$$

where $v_1, \ldots, v_R \in X$

<u>Example</u>: When $X = X_{Sep} \subseteq \mathbb{C}^n \otimes \mathbb{C}^n$, an (X, k)-decomposition is just a tensor decomposition.

Viewing *T* as a map $\mathbb{C}^k \to V$, each $v_i \in T(\mathbb{C}^k) \cap X$, so computing $T(\mathbb{C}^k) \cap X \leftrightarrow (X, k)$ -decomposing *T* (Assuming that $\{z_1, \dots, z_R\}$ is linearly independent) <u>Corollary to WEW Theorem [JLV 22]</u>: A generic tensor $T \in \mathbb{C}^n \otimes \mathbb{C}^n \otimes \mathbb{C}^k$ with $\operatorname{rank}(T) \leq \min\{\frac{1}{4}(n-1)^2, k\}$

has a unique rank decomposition, which is recovered in POLY(n)-time by applying our algorithm to $T(\mathbb{C}^k)$.

In particular, a generic $n \times n \times n^2$ tensor of rank $\sim \frac{1}{4}n^2$ is recovered by algorithm.

<u>Corollary to WEW Theorem [JLV 22]</u>: A generic tensor

$$\in (\mathbb{C}^n)^{\otimes m}$$
 of tensor rank
rank $(T) = O(n^{\lfloor m/2 \rfloor})$

has a unique tensor rank decomposition, which is recovered in $n^{O(m)}$ -time by applying our algorithm to $T\left((\mathbb{C}^n)^{\otimes \lfloor m/2 \rfloor}\right)$.

(This is new when m is even. When m is odd you can just use Jennrich directly.)

<u>Corollary to WEW Theorem [JLV 22]</u>: A generic tensor $T \in \mathbb{C}^n \bigotimes \mathbb{C}^n \bigotimes \mathbb{C}^k$ of r-aided rank

 $r - aided rank(X) \le min\{\Omega_r(n^2), k\}$

has a unique tensor rank decomposition, which is recovered in $n^{O(r)}$ -time by applying our algorithm to $T(\mathbb{C}^k)$.

 $T = \sum_{i} v_i \otimes w_i$, where $v_i \in X_r$

r-aided rank \Leftrightarrow (*r*,*r*,1)-multilinear rank

Conclusion

1. Complete hierarchies of linear systems to certify entanglement of a subspace. These work extremely well already at early levels.

Title: Complete hierarchy of linear systems for certifying quantum entanglement of subspaces

 (Briefly mentioned) poly-time algorithms to find low-entanglement elements of a subspace. These also work extremely well.

Title: Computing linear sections of varieties: quantum entanglement, tensor decompositions and beyond

3. Extending symmetric extensions: Separability testing hierarchy of [DPS 04] extended to hierarchies for Schmidt number, biseparability, and *X*-arability.

Title: TBD

Computing linear sections of varieties: quantum entanglement, tensor decompositions and beyond

Nathaniel Johnston¹

Benjamin Lovitz² Aravindan Vijayaraghavan³

- 1. Mount Allison University
- 2. NSF Postdoc, Northeastern University
 - 3. Northwestern University

SIAM AG 2023

July 12, 2023

