Nullstellensatz-inspired algorithms for certifying entanglement of subspaces

Nathaniel Johnston ${ }^{1}$ Benjamin Lovitz ${ }^{2}$ Aravindan Vijayaraghavan ${ }^{3}$

1. Mount Allison University and University of Guelph
2. NSF Postdoc, Northeastern University
3. Northwestern University

University of Western Ontario
November 30, 2022
arXiv:2210.16389
Northeastern
University
$X \subseteq \mathbb{C}^{N}$ a set
$U \subseteq \mathbb{C}^{N}$ a linear subspace Describe $U \cap X$?

U

X

$X \subseteq \mathbb{C}^{N}$ a set
 $U \subseteq \mathbb{C}^{N}$ a linear subspace Describe $U \cap X$?

U

X

1. Certify $U \cap X=\{0\}$
2. Compute $\operatorname{dist}(U, X)$
3. Find elements of $U \cap X$ (and show that these are the only ones)
$X \subseteq \mathbb{C}^{N}$ a set
$U \subseteq \mathbb{C}^{N}$ a linear subspace Describe $U \cap X$?

U

X

1. Certify $U \cap X=\{0\}$
2. Compute $\operatorname{dist}(U, X)$
3. Find elements of $U \cap X$ (and show that these are the only ones)

$$
X_{1}=\left\{v \otimes w: v, w \in \mathbb{C}^{n}\right\} \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}
$$

Def: $U \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$ is 1-entangled if $U \cap X_{1}=\{0\}$.

Applications:

- A PVM $0 \leq M \leq I_{n^{2}}$ on $\mathbb{C}^{n} \otimes \mathbb{C}^{n}$ is an entanglement witness \Leftrightarrow $\operatorname{Im}(M) \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$ is 1-entangled
- For a density operator $\rho \in D\left(\mathbb{C}^{n} \otimes \mathbb{C}^{n}\right)$, $\operatorname{Im}(\rho)$ 1-entangled $\Rightarrow \rho$ is entangled range criterion
- Quantum error correction

$$
\begin{aligned}
& X \subseteq \mathbb{C}^{N} \text { a set } \\
& U \subseteq \mathbb{C}^{N} \text { a linear subspace } \\
& \text { Describe } U \cap X ?
\end{aligned}
$$

U

$\operatorname{dist}(U, X)$
X

1. Certify $U \cap X=\{0\}$
2. Compute $\operatorname{dist}(U, X)$
3. Find elements of $U \cap X$ (and show that these are the only ones)

$$
X_{1}=\left\{v \otimes w: v, w \in \mathbb{C}^{n}\right\} \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}
$$

Def: $U \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$ is $(\epsilon, 1)$-entangled if $\operatorname{dist}\left(U, X_{1}\right)>\epsilon$

Applications:

$\operatorname{Tr}(M \rho)<1-\epsilon$ for every separable state ρ \downarrow

- A PVM $0 \leq M \leq I_{n^{2}}$ on $\mathbb{C}^{n} \otimes \mathbb{C}^{n}$ is an ϵ-entanglement witness \Leftrightarrow $\operatorname{lm}(M) \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$ is $(\epsilon, 1)$-entangled
- Computing geometric measure of entanglement
[Harrow and Montanaro, 2013]: 21 equivalent or closely related problems in quantum info and computer science, including:
- Determining acceptance probability of QMA(2) protocols
- Determining ground-state energy of mean-field Hamiltonians

Application: Computing the Geometric measure of entanglement/Injective tensor norm
$T \quad T \in \mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \mathbb{C}^{n}$

$$
X_{1}=\left\{u \otimes v \otimes w: u, v, w \in \mathbb{C}^{n}\right\}
$$

$X \subseteq \mathbb{C}^{N}$ a set
$U \subseteq \mathbb{C}^{N}$ a linear subspace Describe $U \cap X$?

$\pi \operatorname{dist}(U, X)$

X

1. Certify $U \cap X=\{0\}$
2. Compute $\operatorname{dist}(U, X)$
3. Find elements of $U \cap X$ (and show that these are the only ones)

Tensor decompositions

For $T \in \mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \mathbb{C}^{n}$, an expression $\quad T=\sum_{a=1}^{R} x_{a} \otimes y_{a} \otimes z_{a} \in \mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \mathbb{C}^{n}$
is called a decomposition of T into product tensors
$\operatorname{rank}(T):=\min \{R:$ there exists a decomposition of T into R product tensors $\}$

Uniqueness of tensor decompositions

A rank decomposition

$$
T=\sum_{a=1}^{R} x_{a} \otimes y_{a} \otimes z_{a} \in X \otimes Y \otimes Z
$$

is called the unique (rank) decomposition of T if for any other decomposition

$$
T=\sum_{a \in[R]} x_{a}^{\prime} \otimes y_{a}^{\prime} \otimes z_{a}^{\prime} \in X \otimes Y \otimes Z
$$

there is a permutation $\sigma \in S_{R}$ such that $x_{a} \otimes y_{a} \otimes z_{a}=x_{\sigma(a)}^{\prime} \otimes y_{\sigma(a)}^{\prime} \otimes z_{\sigma(a)}^{\prime}$ for all $a \in[R]$.
罜 + 愣 + 愣 + 䍚 + 圐

Connection between finding elements of $U \cap X_{1}$ and decomposing tensors Let $T \in \mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \mathbb{C}^{m}$ be a tensor.
If
$T\left(\mathbb{C}^{m}\right)$ has a basis of the form $\left\{x_{1} \otimes y_{1}, \ldots, x_{R} \otimes y_{R}\right\} \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$,

Then $T=\sum_{i=1}^{R} x_{i} \otimes y_{i} \otimes z_{i}, \quad$ where $\quad z_{i}=T\left(\left(x_{i} \otimes y_{i}\right)^{*}\right)$.
...So, algorithms for finding elements of $T\left(\mathbb{C}^{m}\right) \cap X_{1}$ lead to tensor decomposition algorithms
If $x_{1} \otimes y_{1}, \ldots, x_{R} \otimes y_{R}$ are the only elements of $T\left(\mathbb{C}^{m}\right) \cap X_{1}$ (up to scale), then $T=\sum_{i=1}^{R} x_{i} \otimes y_{i} \otimes z_{i}$ is the unique rank decomposition of T.

Application: Latent parameter learning

- Let A, B, C, L be finite random variables such that A, B, C are conditionally independent, i.e.

$$
\operatorname{Pr}(a, b, c \mid l)=\operatorname{Pr}(a \mid l) \operatorname{Pr}(b \mid l) \operatorname{Pr}(c \mid l) \quad \text { for all } a, b, c, l .
$$

- Goal: Given the probability vector $\operatorname{Pr}(A, B, C)$, determine $\operatorname{Pr}(A, B, C, L)$.
- Method:

$$
\operatorname{Pr}(A, B, C)=\sum_{l} \operatorname{Pr}(l) \operatorname{Pr}(A, B, C \mid l)=\sum_{l} \operatorname{Pr}(l) \operatorname{Pr}(A \mid l) \otimes \operatorname{Pr}(B \mid l) \otimes \operatorname{Pr}(C \mid l)
$$

... If $\operatorname{Pr}(A, B, C)$ has a unique decomposition, then we can recover $\operatorname{Pr}(A, B, C, l)$,

- Applications: Learning mixtures of spherical gaussians, phylogenetic tree reconstruction, hidden Markov models, orbit retrieval, blind signal separation, document topic models, ...

$X \subseteq \mathbb{C}^{N}$ a conic variety
 $U \subseteq \mathbb{C}^{N}$ a linear subspace Describe $U \cap X$?

This talk: These problems are easy* if U is generic and $\operatorname{dim}(U)$ is not too large

1. Certify $U \cap X=\{0\}$
2. Compute $\operatorname{dist}(U, X)$
3. Find elements of $U \cap X$ (and show that these are the only ones)

Intersecting a subspace with a variety

- Let $V=\mathbb{C}^{N}$.
- $X \subseteq V$ is a variety if it is cut out by some $f_{1}, \ldots, f_{p} \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$, i.e.

$$
X=\left\{v \in V: f_{1}(v)=\cdots=f_{p}(v)=0\right\}
$$

- X is a conic variety if $\mathbb{C} X=X$.

Question: Given a (linear) subspace $U \subseteq V$, describe $U \cap X$.

$X \subseteq V$ is a variety if it is cut out by some $f_{1}, \ldots, f_{p} \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$, i.e.

$$
X=\left\{v \in V: f_{1}(v)=\cdots=f_{p}(v)=0\right\}
$$

Example: $\quad X_{1}=\left\{v \in \mathbb{C}^{n} \otimes \mathbb{C}^{n}: \operatorname{rank}(v) \leq 1\right\} \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$

$$
\operatorname{rank}\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right] \leq 1 \quad \Leftrightarrow \quad \operatorname{det}\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]:=a c-b d=0
$$

$n \times n$ matrix has rank $\leq 1 \quad \Leftrightarrow \quad$ determinant of every 2×2 submatrix is zero

So X_{1} is cut out by $p=\binom{n}{2}^{2}$ homogeneous polynomials of degree $d=2$

Other examples...

- Schmidt rank $\leq r$ vectors:
$X_{r}=\left\{v \in \mathbb{C}^{n} \otimes \mathbb{C}^{n}: \operatorname{rank}(v) \leq r\right\}$
- Product tensors: $X_{1}=\left\{v_{1} \otimes \cdots \otimes v_{k}: v_{1}, \ldots, v_{k} \in \mathbb{C}^{n}\right\}$
- Biseparable tensors:
$X_{B}=\left\{T \in\left(\mathbb{C}^{n}\right)^{\otimes m}\right.$: Some flattening of T has rank 1$\}$
- Slice rank 1 tensors
$X_{S}=\left\{T \in\left(\mathbb{C}^{n}\right)^{\otimes m}\right.$: Some 1 v.s. all flattening of T has rank 1$\}$
- Matrix product states

Outline

Given a conic variety $X \subseteq \mathbb{C}^{N}$ and a linear subspace $U \subseteq \mathbb{C}^{N}$, describe $U \cap X$.
Algorithms to describe $U \cap X$
\Rightarrow Algorithm to certify $U \cap X=\{0\}$.
2. Algorithm to determine $\operatorname{dist}(U, X)$.
3. Algorithm to recover elements of $U \cap X$.

Part 1: Algorithm to certify $U \cap X=\{0\}$

Input:

1. Polynomials $f_{1}, \ldots, f_{p} \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$ that cut out X.
2. A basis $\left\{u_{1}, \ldots, u_{R}\right\}$ for U.

$$
X
$$

Output: Proof that $U \cap X=\{0\}$

Question: Given a (linear) subspace $U \subseteq V$, certify $U \cap X=\{0\}$.

Example: $X_{1}=\left\{v \in \mathbb{C}^{n} \otimes \mathbb{C}^{n}: \operatorname{rank}(v) \leq 1\right\}$
Schmidt rank
We say $U \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$ is 1 -entangled if $U \cap X_{1}=\{0\}$.

- [Buss et al 1999]: Determining whether U is 1-entangled is NP-Hard
- [Barak et al 2019]: Best known algorithm for determining 1 -entanglement requires ϵ-promise and takes $2 \tilde{O}(\sqrt{n} / \epsilon)$ time.
- Theorem [JLV 2022]: Polynomial time algorithm if $\operatorname{dim}(U)$ is small enough and U is generic.

Theorem [JLV]: Case of $X_{1}=\left\{v \in \mathbb{C}^{n} \otimes \mathbb{C}^{n}: \operatorname{rank}(v) \leq 1\right\}$
For a generic linear subspace $U \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$ of dimension

$$
\operatorname{dim}(U) \leq \frac{1}{4}(n-1)^{2} _\begin{array}{l}
\text { Constant multiple of } \\
\text { maximum possible }(n-1)^{2}
\end{array}
$$

it holds that $U \cap X_{1}=\{0\}$, and our algorithm certifies this in time $n^{O(1)}$.

Analytic definition: If $\left\{u_{1}, \ldots, u_{R}\right\} \in \mathbb{C}^{n} \otimes \mathbb{C}^{n}$ are chosen independently at random according to e.g. the uniform spherical measure, then with probability 1...
Algebraic definition: There is a Zariski open dense subset $A \subseteq\left(\mathbb{C}^{n} \otimes \mathbb{C}^{n}\right)^{\times R}$ such that...

Theorem [JLV]: Case of $X_{1}=\left\{v \in \mathbb{C}^{n} \otimes \mathbb{C}^{n}: \operatorname{rank}(v) \leq 1\right\}$ For a generic linear subspace $U \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$ of dimension

$$
\operatorname{dim}(U) \leq \frac{1}{4}(n-1)^{2} \quad \begin{aligned}
& \text { Constant multiple of } \\
& \text { maximum possible }(n-1)^{2}
\end{aligned}
$$

it holds that $U \cap X_{1}=\{0\}$, and our algorithm certifies this in time $n^{O(1)}$.

Furthermore, for a generic subspace $U \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$ of this dimension containing a generic element of X_{1}, there is an algorithm that recovers this element in time $n^{0(1)}$.
Analytic def: "If you pick $v_{1} \in X_{1}$ randomly, and $v_{2}, \ldots, v_{R} \in \mathbb{C}^{n} \otimes \mathbb{C}^{n}$ randomly..."
Algebraic def: There is a Zariski open dense subset $A \subseteq X_{1} \times\left(\mathbb{C}^{n} \otimes \mathbb{C}^{n}\right)^{\times R-1}$ s.t...

Algorithm performance to certify $U \cap X_{1}=\{0\}$

n	$\operatorname{dim}(\mathrm{U})$	time
3	3	0.01 s
4	8	0.03 s
5	13	0.08 s
6	20	0.20 s
7	29	0.49 s
8	39	1.06 s
9	50	2.24 s
10	63	5.56 s

More general statement for arbitrary X

Theorem [JLV]: Suppose that $X \subseteq \mathbb{C}^{N}$ is a conic variety cut out by $p=\delta\binom{N+d-1}{d}$ linearly independent homogeneous degree- d polynomials $f_{1}, \ldots, f_{p} \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]_{d}$ for some $\delta \in[0,1]$.

Then for a generic linear subspace $U \subseteq \mathbb{C}^{N}$ of dimension

$$
\operatorname{dim}(U) \leq \frac{N+d-1}{d!} \delta
$$

it holds that $U \cap X=\{0\}$, and there is an algorithm that certifies this in time $N^{O(d)}$.

Theorem [JLV]: If $X \subseteq \mathbb{C}^{N}$ is cut out by $p=\delta\binom{N+d-1}{d}$ linearly independent homogeneous degree- d polynomials, then for a generic linear subspace $U \subseteq \mathbb{C}^{N}$ of dimension

$$
\operatorname{dim}(U) \leq \frac{N+d-1}{d!} \delta
$$

it holds that $U \cap X=\{0\}$, and there is an algorithm that certifies this in time $N^{O(d)} \longleftarrow$ Not bad: Takes $\binom{N+d-1}{d}$ time just to read off degree- d polynomials

Example: If $d=1$, then $X \subseteq \mathbb{C}^{N}$ is a linear subspace. Theorem says:
If $U \subseteq \mathbb{C}^{N}$ generic and $\quad \operatorname{dim}(U) \leq \delta N=p=N-\operatorname{dim}(X)$, Then $U \cap X=\{0\}$, and this can be verified in poly (N) time.

Theorem [JLV]: If $X \subseteq \mathbb{C}^{N}$ is cut out by $p=\delta\binom{N+d-1}{d}$ linearly independent homogeneous degree- d polynomials, then for a generic linear subspace $U \subseteq \mathbb{C}^{N}$ of dimension

$$
\operatorname{dim}(U) \leq \frac{N+d-1}{d!} \delta,
$$

it holds that $U \cap X=\{0\}$, and there is an algorithm that certifies this in time $N^{O(d)}$.

Fact: For a conic variety $X \subseteq \mathbb{C}^{N}$, if there exists $U \subseteq \mathbb{C}^{N}$ such that $U \cap X=\{0\}$, then $\operatorname{dim}(X) \leq N-\operatorname{dim}(U)$.

Hilbert function of X Krull dimension of X

Maximize δ
Corollary: $\operatorname{dim}(X) \leq N-\frac{N+d-1}{d!} \delta \stackrel{\downarrow}{=} N-\frac{N+d-1}{d!}\left(1-\frac{h_{X}(d)}{\binom{N+d-1}{d}}\right)$

Again: A curious upper bound on $\operatorname{dim}(X)$

Corollary:
For a conic variety $X \subseteq \mathbb{C}^{N}$,
$\operatorname{dim}(X) \leq N-\frac{N+d-1}{d!}\left(1-\frac{h_{X}(d)}{\binom{N+d-1}{d}}\right)$ for all $d \geq 1$.

Theorem [JLV]: If $X \subseteq \mathbb{C}^{N}$ is cut out by $p=\delta\binom{N+d-1}{d}$ linearly independent homogeneous degree- d polynomials, then for a generic linear subspace $U \subseteq \mathbb{C}^{N}$ of dimension

$$
\operatorname{dim}(U) \leq \frac{N+d-1}{d!} \delta,
$$

it holds that $U \cap X=\{0\}$, and there is an algorithm that certifies this in time $N^{O(d)}$.

If $\delta=\Omega(1)$, then we certify $U \cap X=\{0\}$ for generic subspaces U with $\operatorname{dim}(U)=\Omega(N) \quad$ (the largest possible).

If $\delta=\Omega(1)$, then we certify $U \cap X=\{0\}$ in time $N^{O(d)}$ for generic subspaces U with $\operatorname{dim}(U)=\Omega(N) \quad$ (the largest possible).

Example: $X_{1}=\left\{v \in \mathbb{C}^{n} \otimes \mathbb{C}^{n}: \operatorname{rank}(v) \leq 1\right\}$ cut out by 2×2 minors

$$
\text { number of variables }=N=n^{2}
$$

$$
\begin{gathered}
\text { number of polynomials }=p=\binom{n}{2}^{2} \\
\text { polynomial degree }=d=2
\end{gathered}
$$

$$
\delta:=\frac{p}{\binom{N+d-1}{d}}=\frac{\binom{n}{2}^{2}}{\binom{n^{2}+2-1}{2}}=\Omega(1)
$$

So we certify $U \cap X_{1}=\{0\}$ in time $n^{O(d)}$ for generic subspaces U with $\operatorname{dim}(U)=\Omega\left(n^{2}\right)$

Other examples...

All in poly(N) time

- Schmidt rank $\leq r$ vectors:
$X_{r}=\left\{v \in \mathbb{C}^{n} \otimes \mathbb{C}^{n}: \operatorname{rank}(v) \leq r\right\}$
$\operatorname{dim}(U)=\Omega_{r}\left(n^{2}\right)$
- Product tensors: $X_{1}=\left\{v_{1} \otimes \cdots \otimes v_{m}: v_{1}, \ldots, v_{m} \in \mathbb{C}^{n}\right\}$

$$
\operatorname{dim}(U) \sim \frac{1}{4} n^{m}
$$

- Biseparable tensors:
$X_{B}=\left\{T \in\left(\mathbb{C}^{n}\right)^{\otimes m}\right.$: Some flattening of T has rank 1$\}$
$\operatorname{dim}(U) \sim \frac{1}{4} n^{m}$
- Slice rank 1 tensors
$X_{S}=\left\{T \in\left(\mathbb{C}^{n}\right)^{\otimes m}\right.$: Some 1 v.s. all flattening of T has rank 1$\}$
- Matrix product states:

The Algorithm (Nullstellensatz Certificate)

Part 1: Algorithm to certify $U \cap X=\{0\}$

Input:

1. Polynomials $f_{1}, \ldots, f_{p} \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$ that cut out X.
2. A basis $\left\{u_{1}, \ldots, u_{R}\right\}$ for U.

$$
X
$$

Output: Proof that $U \cap X=\{0\}$

The symmetric subspace
Let $S^{d}(V) \subseteq V^{\otimes d}$ be the symmetric subspace

Example: $v^{\otimes d} \in S^{d}(V)$ for all $v \in V$
Example: $v_{1} \otimes v_{2}+v_{2} \otimes v_{1} \in S^{2}(V)$ for all $v_{1}, v_{2} \in V$ Non-example: $v_{1} \otimes v_{2}-v_{2} \otimes v_{1} \notin S^{2}(V)$

The symmetric subspace

Let $S^{d}(V) \subseteq V^{\otimes d}$ be the symmetric subspace
$S^{d}(V)=\left\{T=\left(T_{i_{1}, \ldots, i_{d}}\right)_{i_{j \in[N]}} \in V^{\otimes d}: T=\left(T_{\left.i_{\sigma(1)}, \ldots, i_{\sigma(d)}\right)}\right)_{i_{j} \in[N]} \quad\right.$ for all $\left.\quad \sigma \in \mathbb{S}_{d}\right\}$
$P_{d, V}^{\vee}: V^{\otimes d} \rightarrow V^{\otimes d}$ orthogonal projection onto $S^{d}(V)$

The symmetric subspace

Let $S^{d}(V) \subseteq V^{\otimes d}$ be the symmetric subspace

$$
S^{d}(V)=\left\{T=\left(T_{i_{1}, \ldots, i_{d}}\right)_{i_{j \in[N]}} \in V^{\otimes d}: T=\left(T_{i_{\sigma(1)}, \ldots, i_{\sigma(d)}}\right)_{i_{j} \in[N]} \quad \text { for all } \quad \sigma \in \mathfrak{S}_{d}\right\}
$$

$P_{d, V}^{\vee}: V^{\otimes d} \rightarrow V^{\otimes d}$ orthogonal projection onto $S^{d}(V)$

Basis for $S^{d}(V): B_{d, V}^{\vee}:=\left\{P_{d, V}^{\vee}\left(\left|i_{1}\right\rangle \otimes \cdots \otimes\left|i_{d}\right\rangle\right): 1 \leq i_{1} \leq \cdots \leq i_{d} \leq N\right\}$

A characterization of conic varieties

Fact/Definition: For a subset $X \subseteq V$, the following are equivalent:

1. X is a conic variety
2. There exists $d \in \mathbb{N}$ and an orthogonal projection $\Psi_{X}^{d}: V^{\otimes d} \rightarrow V^{\otimes d}$ such that:
i. $\quad \Psi_{X}^{d}$ is symmetric: $\operatorname{Im}\left(\Psi_{X}^{d}\right) \subseteq S^{d}(V)$
ii. $\quad X=\left\{v \in V: v^{\otimes d} \in \operatorname{Im}\left(\Psi_{X}^{d}\right)\right\}$ Why? If X is cut out by $f_{1}, \ldots, f_{p} \in S^{d}\left(V^{*}\right)$, let $\Psi_{X}^{d}=\operatorname{Proj}\left(\bigcap_{i=1}^{p} \operatorname{Ker}\left(f_{i}\right)\right)$

$$
v \in X \quad \Leftrightarrow \quad f_{1}\left(v^{\otimes d}\right)=\cdots=f_{p}\left(v^{\otimes d}\right)=0 \quad \Leftrightarrow \quad v^{\otimes d} \in \operatorname{Im}\left(\Psi_{X}^{d}\right)
$$

Fact/Definition: For a subset $X \subseteq V$, the following are equivalent:

1. X is a conic variety
2. There exists $d \in \mathbb{N}$ and an orthogonal projection $\Psi_{X}^{d}: V^{\otimes d} \rightarrow V^{\otimes d}$ such that:
i. $\quad \Psi_{X}^{d}$ is symmetric: $\operatorname{Im}\left(\Psi_{X}^{d}\right) \subseteq S^{d}(V)$
ii. $X=\left\{v \in V: v^{\otimes d} \in \operatorname{Im}\left(\Psi_{X}^{d}\right)\right\}$

Example: $X_{1}=\left\{v \otimes w: v, w \in \mathbb{C}^{n}\right\} \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$ $d=2$

$$
\Psi_{X}^{2}=\operatorname{Proj}\left(S^{2}\left(\mathbb{C}^{n}\right) \otimes S^{2}\left(\mathbb{C}^{n}\right)\right)
$$

$$
X_{1}=\left\{v \in \mathbb{C}^{n} \otimes \mathbb{C}^{n}: v^{\otimes 2} \in S^{2}\left(\mathbb{C}^{n}\right) \otimes S^{2}\left(\mathbb{C}^{n}\right)\right\}
$$

Question: Given a conic variety $X=\left\{v \in V: v^{\otimes d} \in \operatorname{Im}\left(\Psi_{X}^{d}\right)\right\} \subseteq V$ and a basis $\left\{u_{1}, \ldots, u_{R}\right\}$ for a subspace $U \subseteq \mathbb{C}^{N}$, is $U \cap X=\{0\}$?

$$
S^{d}(U)=U^{\otimes d} \cap S^{d}(V)
$$

Algorithm:

$$
=\operatorname{span}\left\{P_{d, V}^{\vee}\left(u_{i_{1}} \otimes \cdots \otimes u_{i_{d}}\right): 1 \leq i_{1} \leq \cdots \leq i_{d} \leq R\right\}
$$

1. If $\operatorname{Im}\left(\Psi_{X}^{d}\right) \cap S^{d}(U)=\{0\}$, output YES
2. Otherwise, output I DON'T KNOW

Correctness: If $\operatorname{Im}\left(\Psi_{X}^{d}\right) \cap S^{d}(U)=\{0\}$, then $U \cap X=\{0\}$.
Proof: If $u \in U \cap X$, then $u^{\otimes d} \in \operatorname{Im}\left(\Psi_{X}^{d}\right) \cap S^{d}(U)$.

Theorem [JLV]: If $X \subseteq \mathbb{C}^{N}$ is cut out by $p=\delta\binom{N+d-1}{d}$ linearly independent homogeneous degree- d polynomials, then for a generic linear subspace $U \subseteq \mathbb{C}^{N}$ of dimension

$$
\begin{equation*}
\operatorname{dim}(U) \leq \frac{N+d-1}{d!} \delta \tag{1}
\end{equation*}
$$

it holds that $\operatorname{Im}\left(\Psi_{X}^{d}\right) \cap S^{d}(U)=\{0\}$.
Proof idea: Given a subspace $W:=\operatorname{Im}\left(\Psi_{X}^{d}\right) \subseteq S^{d}\left(\mathbb{C}^{N}\right)$, show that a (generic) subspace of the form $S^{d}(U)$, for $\operatorname{dim}(U)$ not too large, satisfies $W \cap S^{d}(U)=\{0\}$.

Proof idea: Given a subspace $W \subseteq S^{d}\left(\mathbb{C}^{N}\right)$, show that a (generic) subspace of the form $S^{d}(U)$, for $\operatorname{dim}(U)$ not too large, satisfies $W \cap S^{d}(U)=\{0\}$.

One might hope that you could take $R:=\operatorname{dim}(U)$ maximal for which

Proof idea: Given a subspace $W \subseteq S^{d}\left(\mathbb{C}^{N}\right)$, show that a (generic) subspace of the form $S^{d}(U)$, for $\operatorname{dim}(U)$ not too large, satisfies $W \cap S^{d}(U)=\{0\}$.

One might hope that you could take $R:=\operatorname{dim}(U)$ maximal for which

$$
\operatorname{dim}(W)+\left(\begin{array}{c}
N+R-1 \\
R \\
3
\end{array}\right) \leq\left(\begin{array}{c}
N+d-1 \\
d \\
6
\end{array}\right)
$$

Not true! Take $N=3, d=2, \quad W=S^{2}\left(\mathbb{C}^{2}\right) \subseteq S^{2}\left(\mathbb{C}^{3}\right)$.

Then for any $U \subseteq \mathbb{C}^{3}$ of dimension $\operatorname{dim}(U)=2$, it holds that $S^{2}\left(\mathbb{C}^{2}\right) \cap S^{2}(U) \supseteq S^{2}\left(\mathbb{C}^{2} \cap U\right) \neq\{0\}$

Question: Given a conic variety $X=\left\{v \in V: v^{\otimes d} \in \operatorname{Im}\left(\Psi_{X}^{d}\right)\right\} \subseteq V$ and a basis $\left\{u_{1}, \ldots, u_{R}\right\}$ for a subspace $U \subseteq \mathbb{C}^{N}$, is $U \cap X=\{0\}$?

Complete hierarchy:

1. For $c \geq d$, let $\Psi_{X}^{c}=\left(\Psi_{X}^{d} \otimes I_{V}^{\otimes c-d}\right): V^{\otimes c} \rightarrow V^{\otimes c}$
2. If $\operatorname{Im}\left(\Psi_{X}^{c}\right) \cap S^{c}(U)=\{0\}$ for some $c \leq(d+1)^{N}$, output YES
3. Otherwise, output NO

Correctness:

$\operatorname{Im}\left(\Psi_{X}^{c}\right) \cap S^{c}(U)=\{0\}$ for some $c \leq(d+1)^{N} \Leftrightarrow U \cap X=\{0\}$
Proof: \Rightarrow : For any $u \in U \cap X$, it holds that $u^{\otimes c} \in \operatorname{Im}\left(\Psi_{X}^{c}\right) \cap S^{c}(U)$. \Leftarrow : Hilbert's Nullstellensatz + degree bounds

Outline

Given a conic variety $X \subseteq \mathbb{C}^{N}$ and a linear subspace $U \subseteq \mathbb{C}^{N}$, describe $U \cap X$.
Algorithms to describe $U \cap X$

1. Algorithm to certify $U \cap X=\{0\}$.

Algorithm to determine $\operatorname{dist}(U, X)$.
3. Algorithm to recover elements of $U \cap X$.

Part 2: Algorithm to determine $\operatorname{dist}(U, X)$

Input:

1. Polynomials $f_{1}, \ldots, f_{p} \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$ that cut out X.
2. A basis $\left\{u_{1}, \ldots, u_{R}\right\}$ for U.

Making the algorithm robust

Observation:

$$
\operatorname{Im}\left(\Psi_{X}^{c}\right) \cap S^{c}(U)=\{0\} \quad \Leftrightarrow \quad \lambda_{\max }\left(P_{d, V}^{\vee} \Psi_{X}^{c}\left(P_{U} \otimes I_{V}^{\otimes c-1}\right)\right)<1
$$

Proof:

$$
\begin{aligned}
& \lambda_{\max }\left(P_{d, V}^{\vee} \Psi_{X}^{c}\left(P_{U} \otimes I_{V}^{\otimes c-1}\right)\right)<1 \\
& \\
& \quad \Leftrightarrow S^{d}(V) \cap \operatorname{Im}\left(\Psi_{X}^{c}\right) \cap\left(U \otimes V^{\otimes c-1}\right)=\{0\} \\
& \quad \Leftrightarrow \operatorname{Im}\left(\Psi_{X}^{c}\right) \cap S^{c}(U)=\{0\}
\end{aligned}
$$

Making the algorithm robust

Observation:
$\operatorname{Im}\left(\Psi_{X}^{c}\right) \cap S^{c}(U)=\{0\} \quad \Leftrightarrow \quad v_{c}:=\lambda_{\max }\left(P_{d, V}^{\vee} \Psi_{X}^{c}\left(P_{U} \otimes I_{V}^{\otimes c-1}\right) \Psi_{X}^{c} P_{d, V}^{\vee}\right)<1$

Proof:

$$
\begin{aligned}
v_{c}<1 & \\
& \Leftrightarrow S^{d}(V) \cap \operatorname{Im}\left(\Psi_{X}^{c}\right) \cap\left(U \otimes V^{\otimes c-1}\right)=\{0\} \\
& \Leftrightarrow \operatorname{Im}\left(\Psi_{X}^{c}\right) \cap S^{c}(U)=\{0\}
\end{aligned}
$$

Question: Given a conic variety $X=\left\{v \in V: v^{\otimes d} \in \operatorname{Im}\left(\Psi_{X}^{d}\right)\right\} \subseteq V$ and a basis $\left\{u_{1}, \ldots, u_{R}\right\}$ for a subspace $U \subseteq \mathbb{C}^{N}$, is $U \cap X=\{0\}$?

Complete hieratehy:

1. If $v_{c}<1$ for some $c \leq(d+1)^{N}$, output YES
2. Otherwise, output NO

Correctness:

$v_{c}<1 \Leftrightarrow \operatorname{Im}\left(\Psi_{X}^{C}\right) \cap S^{c}(U)=\{0\}$

Robust version

Question: Given a conic variety $X=\left\{v \in V: v^{\otimes d} \in \operatorname{Im}\left(\Psi_{X}^{d}\right)\right\} \subseteq V$ and a basis $\left\{u_{1}, \ldots, u_{R}\right\}$ for a subspace $U \subseteq \mathbb{F}^{N}$, what is $\operatorname{dist}(U, X)$?

$$
\operatorname{dist}(U, X)=\frac{1}{4} \min _{\substack{x \in X \\\|x\|=1}} \min _{u \in U}^{\|u\|=1} \backslash \substack{ } x x^{*}-u u^{*} \|_{1}^{2}
$$

Hausdorff distance

$$
\begin{aligned}
& =1-\max _{\substack{x \in X \\
\|x\|=1 \\
\|u\| \|=1}} \max _{u \in U}|\langle x, u\rangle|^{2} \\
& =1-\max _{\substack{x \in X \\
\|x\|=1}}\left\langle x, P_{U} x\right\rangle
\end{aligned}
$$

Question: Given a conic variety $X=\left\{v \in V: v^{\otimes d} \in \operatorname{Im}\left(\Psi_{X}^{d}\right)\right\} \subseteq V$ and a basis $\left\{u_{1}, \ldots, u_{R}\right\}$ for a subspace $U \subseteq \mathbb{C}^{N}$, what is $\operatorname{dist}(U, X)$?

Theorem [JLV]: $v_{c}:=\lambda_{\max }\left(P_{d, V}^{v} \Psi_{X}^{c}\left(P_{U} \otimes I_{V}^{\otimes c-1}\right) \Psi_{x}^{c} P_{d, V}^{v}\right)$

- $v_{c}=1$ for all $c \leq(d+1)^{N} \Leftrightarrow \operatorname{dist}(U, X)=0$
- $v_{d} \geq v_{d+1} \geq v_{d+2} \geq \cdots$
- $\operatorname{dist}(U, X)=1-\lim _{c \rightarrow \infty} v_{c}$

In particular, $\operatorname{dist}(U, X) \geq 1-v_{c}$ for all c (inner approximation)

Computing upper bounds on $\operatorname{dist}(U, X)$ is easy... $\operatorname{dist}(U, X) \leq \operatorname{dist}(u, x)$ for any $x \in X, u \in U$

U

X

We have a complete hierarchy of lower bounds on $\operatorname{dist}(U, X)$

Theorem [JLV]:

- $v_{c}=1$ for all $c \leq(d+1)^{N} \Leftrightarrow \operatorname{dist}(U, X)=0$
- $v_{d} \geq v_{d+1} \geq v_{d+2} \geq \cdots$
- $1-\operatorname{dist}(U, X)=\lim _{c \rightarrow \infty} v_{c}$

In particular, $1-\operatorname{dist}(U, X) \leq v_{c}$ for all c (inner approximation)
Proof:

$$
\begin{aligned}
& \operatorname{Im}\left(P_{d, V}^{\vee} \Psi_{X}^{c}\right) \supseteq \operatorname{span}\left\{v^{\otimes c}: v \in X\right\}, \quad \text { so for } \\
& v_{c} \geq\left\langle v^{\otimes c}, P_{d, V}^{\vee} \Psi_{X}^{c}\left(P_{U} \otimes I_{V}^{\otimes c-1}\right) \Psi_{X}^{c} P_{d, V}^{\vee} v^{\otimes c}\right\rangle \\
& \quad=\left\langle v^{\otimes c},\left(P_{U} \otimes I_{V}^{\otimes c-1}\right) v^{\otimes c}\right\rangle \\
& \quad=\left\langle v, P_{U} v\right\rangle
\end{aligned}
$$

$$
\ldots \text { So } v_{c} \geq \max _{v \in X}\left\langle v, P_{U} v\right\rangle=1-\operatorname{dist}(U, X)
$$

Outline

Given a conic variety $X \subseteq \mathbb{C}^{N}$ and a linear subspace $U \subseteq \mathbb{C}^{N}$, describe $U \cap X$.
Algorithms to describe $U \cap X$

1. Algorithm to determine whether $U \cap X=\{0\}$.
2. Algorithm to determine $\operatorname{dist}(U, X)$.

Algorithm to recover elements of $U \cap X$.

Part 3: Algorithm to recover elements of $U \cap X$

Input:

1. Polynomials $f_{1}, \ldots, f_{p} \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$ that cut out X.
2. A basis $\left\{u_{1}, \ldots, u_{R}\right\}$ for U.

$$
U
$$

Output: A set of points $\left\{v_{1}, \ldots, v_{s}\right\} \in U \cap X$, and a proof that these are the only elements (up to scalar multiples).

Theorem [JLV]: Case of $X_{1}=\left\{v \in \mathbb{C}^{n} \otimes \mathbb{C}^{n}: \operatorname{rank}(v) \leq 1\right\}$

For a generic linear subspace $U \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$ of dimension

$$
\operatorname{dim}(U) \leq \frac{1}{4}(n-1)^{2} \quad \begin{aligned}
& \text { Constant multiple of } \\
& \text { maximum possible }(n-1)^{2}
\end{aligned}
$$

it holds that $U \cap X_{1}=\{0\}$, and our algorithm certifies this in time $n^{O(1)}$.

More generally, for a generic subspace $U \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$ of this dimension containing $s \leq \operatorname{dim}\left(\delta^{\delta}\right)$ generic elements of X_{1}, our algorithm recovers these elements in time $n^{O(1)}$, and certifies that these are the only elements of $U \cap X_{1}$.

Analytic def: "If I pick $v_{1}, \ldots, v_{s} \in X_{1}$ and $v_{s+1}, \ldots, v_{R} \in \mathbb{C}^{n} \otimes \mathbb{C}^{n}$ randomly..." Algebraic def: There is a Zariski open dense subset $A \subseteq X_{1}^{\times s} \times\left(\mathbb{C}^{n} \otimes \mathbb{C}^{n}\right)^{\times R-s}$ s.t...

Corollary: A generic tensor $T \in \mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \mathbb{C}^{m}$ with

$$
\operatorname{rank}(T) \leq \min \left\{\frac{1}{4}(n-1)^{2}, m\right\}
$$

has a unique rank decomposition, which is recovered by applying фur algorithm to $T\left(\mathbb{C}^{m}\right)$.

Analytic def: $T=\sum_{i=1}^{R} x_{i} \otimes y_{i} \otimes z_{i}$, where each $x_{i} \otimes y_{i} \otimes z_{i}$ is chosen randomly.

Algebraic def: There is a Zariski open dense subset $A \subseteq$ \{rank \leq R tensors\}

Corollary: A generic tensor $T \in \mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \mathbb{C}^{m}$ with

$$
\operatorname{rank}(T) \leq \min \left\{\frac{1}{4}(n-1)^{2}, m\right\}
$$

has a unique rank decomposition, which is recovered by applying our algorithm to $T\left(\mathbb{C}^{m}\right)$.

Proof: Say $T=\sum_{i=1}^{R} x_{i} \otimes y_{i} \otimes z_{i}$.
T generic, $R \leq m \Rightarrow\left\{z_{1}, \ldots, z_{R}\right\}$ is linearly independent

$$
\Rightarrow T\left(\mathbb{C}^{m}\right)=\operatorname{span}\left\{x_{1} \otimes y_{1}, \ldots, x_{R} \otimes y_{R}\right\}
$$

$T\left(\mathbb{C}^{m}\right)$ generic, $R \leq \frac{1}{4}(n-1)^{2} \Rightarrow x_{1} \otimes y_{1}, \ldots, x_{R} \otimes y_{R}$ are the only elements of $T\left(\mathbb{C}^{m}\right) \cap X_{1}$ (up to scale), and they are recovered by our algorithm

(X, \mathbb{C}^{m})-decompositions (aka simult. X-decomp)

Let $X \subseteq V$ be a non-degenerate conic variety.
For $T \in V \otimes \mathbb{C}^{m}$, an expression $\quad T=\sum_{i=1}^{R} v_{i} \otimes z_{i} \in V \otimes \mathbb{C}^{m}$
where $v_{1}, \ldots, v_{R} \in X$
is called an $\left(X, \mathbb{C}^{m}\right)$-decomposition of T
$\operatorname{rank}_{\mathrm{X}}(T):=\min \left\{R\right.$: there exists an $\left(X, \mathbb{C}^{m}\right)$-decomposition of T of length R$\}$

Uniqueness of $\left(X, \mathbb{C}^{m}\right)$-decompositions

A rank decomposition

$$
T=\sum_{i=1}^{R} v_{i} \otimes z_{i} \in V \otimes \mathbb{C}^{m}
$$

is called the unique $\left(X, \mathbb{C}^{m}\right)$-(rank) decomposition of T if for any other decomposition

$$
T=\sum_{i \in[R]} v_{i}^{\prime} \otimes z_{i}^{\prime} \in V \otimes \mathbb{C}^{m}
$$

there is a permutation $\sigma \in S_{R}$ such that $v_{i} \otimes z_{i}=v_{\sigma(i)}^{\prime} \otimes z_{\sigma(i)}^{\prime}$ for all $i \in[R]$.
罜 + 愣 + 愣 + 䍚 + 圐

Application to $\left(X, \mathbb{C}^{m}\right)$-decompositions (or simultaneous \boldsymbol{X}-decompositions) Let $T \in V \otimes \mathbb{C}^{m}$ be a tensor.
If

$$
T\left(\mathbb{C}^{m}\right) \text { has a basis of the form }\left\{v_{1}, \ldots, v_{R}\right\} \subseteq \mathrm{X}
$$

Then $T=\sum_{i=1}^{R} v_{i} \otimes z_{i}, \quad$ where $\quad z_{i}=T\left(v_{i}^{*}\right)$.
...So, algorithms for finding elements of $T\left(\mathbb{C}^{m}\right) \cap X$ lead to tensor decomposition algorithms
If v_{1}, \ldots, v_{R} are the only elements of $T\left(\mathbb{C}^{m}\right) \cap X$ (up to scale), then this is the unique rank decomposition of T.

Theorem [JLV]: If $X \subseteq \mathbb{C}^{N}$ is irreducible, cut out by $p=\delta\binom{N+d-1}{d}$ linearly independent homogeneous degree- d polynomials, and has no equations in degree $d-1$, then for a generic linear subspace $U \subseteq \mathbb{C}^{N}$ of dimension

$$
\operatorname{dim}(U) \leq \frac{N+d-1}{d!} \delta
$$

containing $s \leq \operatorname{dim}(U)$ generic elements of X, our algorithm recovers these elements in time $N^{O(d)}$, and certifies that these are the only elements of $U \cap X$.

Algebraic def: There is a Zariski open dense subset $A \subseteq X^{\times s} \times\left(\mathbb{C}^{n} \otimes \mathbb{C}^{n}\right)^{\times R-s}$ s.t...

Corollary: A generic tensor $T \in V \otimes \mathbb{C}^{m}$ with

$$
\operatorname{rank}_{\mathrm{X}}(T) \leq \min \left\{\frac{N+d-1}{d!} \delta, m\right\}
$$

has a unique $\left(X, \mathbb{C}^{m}\right)$-decomposition, which is recovered by applying our algorithm to $T\left(\mathbb{C}^{m}\right)$.

Proof: Say $T=\sum_{i=1}^{R} v_{i} \otimes z_{i}$
T generic, $R \leq m \Rightarrow\left\{z_{1}, \ldots, z_{R}\right\}$ is linearly independent

$$
\Rightarrow T\left(\mathbb{C}^{m}\right)=\operatorname{span}\left\{v_{1}, \ldots, v_{R}\right\}
$$

$T\left(\mathbb{C}^{m}\right)$ generic, $R \leq \frac{N+d-1}{d!} \delta \Rightarrow v_{1}, \ldots, v_{R}$ are the only elements of $T\left(\mathbb{C}^{m}\right) \cap X \quad$ (up to scale), and they are recovered by our algorithm

Other examples...

- Schmidt rank $\leq r$ vectors:
$X_{r}=\left\{v \in \mathbb{C}^{n} \otimes \mathbb{C}^{n}: \operatorname{rank}(v) \leq r\right\}$
Recover $\left(X_{r}, \mathbb{C}^{m}\right)$ - decompositions of rank $\Omega_{r}\left(n^{2}\right)$
- Product tensors: $X_{1}=\left\{v_{1} \otimes \cdots \otimes v_{k / 2}: v_{1}, \ldots, v_{k / 2} \in \mathbb{C}^{n}\right\}$

$$
\text { Recover tensor decompositions in }\left(\mathbb{C}^{n}\right)^{\otimes k}
$$ of rank $\sim n^{k / 2}$

- Biseparable tensors:
$X_{B}=\left\{T \in\left(\mathbb{C}^{n}\right)^{\otimes m}\right.$: Some flattening of T has rank 1\}
- Slice rank 1 tensors
$X_{S}=\left\{T \in\left(\mathbb{C}^{n}\right)^{\otimes m}\right.$: Some 1 v.s. all flattening of T has rank 1\}

Not irreducible!

Other examples...

- Schmidt rank $\leq r$ vectors:
$X_{r}=\left\{v \in \mathbb{C}^{n} \otimes \mathbb{C}^{n}: \operatorname{rank}(v) \leq r\right\}$
- Product tensors: $X_{1}=\left\{v_{1} \otimes \cdots \otimes v_{k}: v_{1}, \ldots, v_{m} \in \mathbb{C}^{n}\right\}$

Recover tensor decompositions in $\left(\mathbb{C}^{n}\right)^{\otimes k}$
of rank $\sim n^{k / 2}$
Related work:
[De Lathauwer, Castaing Cardoso 2007]: Algorithm to decompose symmetric fourth-order tensors [De Lathauwer 2008]: Algorithm for $\left(X_{r}, \mathbb{C}^{m}\right)$-decompositions (also known as "block-term decompositions" and " r-aided ranks")

Our algorithm generalizes these to arbitrary varieties

The Algorithm (Inspired by Nullstellensatz Certificate)

Subroutine: Jennrich's Algorithm

Input: A basis $\left\{u_{1}, \ldots, u_{s}\right\}$ for a subspace $U \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{m}$ of dimension $\operatorname{dim}(U)=s \leq n$

If U has a basis of the form $\left\{x_{1} \otimes y_{1}, \ldots, x_{s} \otimes y_{s}\right\}$,
where $\left\{x_{1}, \ldots, x_{s}\right\}$ and $\left\{y_{1}, \ldots, y_{s}\right\}$ are linearly independent

Then $x_{1} \otimes y_{1}, \ldots, x_{s} \otimes y_{s}$ are the only elements of $U \cap X_{1}$, and Jennrich's algorithm outputs these elements. Otherwise, it outputs FAIL.

Note: This version of Jennrich can only handle $\operatorname{dim}(U) \leq n$, whereas we can do $\operatorname{dim}(U) \leq \Omega\left(n^{2}\right)$

Recall the algorithm to determine if $U \cap X=\{0\} \ldots$

$$
S^{d}(U)=U^{\otimes d} \cap S^{d}(V)
$$

Algorithm:

$$
=\operatorname{span}\left\{P_{d, V}^{\vee}\left(u_{i_{1}} \otimes \cdots \otimes u_{i_{d}}\right): 1 \leq i_{1} \leq \cdots \leq i_{d} \leq R\right\}
$$

1. If $\operatorname{Im}\left(\Psi_{X}^{d}\right) \cap S^{d}(U)=\{0\}$, output YES
2. Otherwise, output I DON'T KNOW

Idea: To find vectors in $U \cap X$, look at the vectors in $\operatorname{Im}\left(\Psi_{X}^{d}\right) \cap S^{d}(U)$.
If $v=\sum_{i=1}^{R} \alpha_{i} u_{i} \in U \cap X$, then

$$
\begin{equation*}
v^{\otimes d}=\sum_{i_{1}, \ldots, i_{d}} \alpha_{i_{1}} \cdots \alpha_{i_{d}}\left(u_{i_{1}} \otimes \cdots \otimes u_{i_{d}}\right) \in \operatorname{Im}\left(\Psi_{X}^{d}\right) \cap S^{d}(U) \tag{1}
\end{equation*}
$$

The tensor of coefficients $\alpha \in\left(\mathbb{C}^{R}\right)^{\otimes d}$ is a (symmetric) product tensor!

Algorithm to find elements of $U \cap X$

1. Compute a basis $\left\{A_{1}, \ldots, A_{s}\right\} \subseteq\left(\mathbb{C}^{R}\right)^{\otimes d}$ for the set of tensors $\alpha \in S^{d}\left(\mathbb{C}^{R}\right)$

$$
\sum_{i_{1}, \ldots, i_{d}} \alpha_{i_{1}, \ldots, i_{d}}\left(u_{i_{1}} \otimes \cdots \otimes u_{i_{d}}\right) \in \operatorname{lm}\left(\Psi_{X}^{d}\right) \cap S^{d}(U)
$$

2. Find the symmetric product tensors in $\operatorname{span}\left\{A_{1}, \ldots, A_{S}\right\} \subseteq\left(\mathbb{C}^{R}\right)^{\otimes d}$

Algorithm to find elements of $U \cap X$

1. Compute a basis $\left\{A_{1}, \ldots, A_{s}\right\} \subseteq\left(\mathbb{C}^{R}\right)^{\otimes d}$ for the set of tensors $\alpha \in S^{d}\left(\mathbb{C}^{R}\right)$ s.t.

$$
\sum_{i_{1}, \ldots, i_{d}} \alpha_{i_{1}, \ldots, i_{d}}\left(u_{i_{1}} \otimes \cdots \otimes u_{i_{d}}\right) \in \operatorname{Im}\left(\Psi_{X}^{d}\right) \cap S^{d}(U)
$$

2. Find the symmetric product tensors in span $\left\{A_{1}, \ldots, A_{s}\right\} \subseteq\left(\mathbb{C}^{R}\right)^{\otimes d}$
3. Run Jennrich's algorithm on span $\left\{A_{1}, \ldots, A_{s}\right\} \subseteq \mathbb{C}^{R} \otimes\left(\left(\mathbb{C}^{R}\right)^{\otimes d-1}\right)$
4. If Jennrich outputs a basis of the form $\left\{\left(\alpha^{(1)}\right)^{\otimes d}, \ldots,\left(\alpha^{(s)}\right)^{\otimes d}\right\}$, then let $v_{j}:=\sum_{i=1}^{R} \alpha_{i}^{(j)} u_{i} \in U \cap X$, and output the only elements of $U \cap X$ are $\left\{v_{1}, \ldots, v_{s}\right\}$ (up to scale).
5. Otherwise, output FAIL.

Idea: Proving that this algorithm finds the elements of $U \cap X$ for generic U

- Recall: The algorithm takes a basis $\left\{u_{1}, \ldots, u_{R}\right\}$ for U as input, and either outputs a basis $\left\{v_{1}, \ldots, v_{R}\right\} \in X$ for U, or outputs FAIL.
- Our generic guarantee says that if $\left\{v_{1}, \ldots, v_{R}\right\} \in X$ are chosen generically, then our algorithm recovers these elements from any basis $\left\{u_{1}, \ldots, u_{R}\right\}$ of $U:=\operatorname{span}\left\{v_{1}, \ldots, v_{R}\right\}$.
- ... It turns out that proving this is equivalent to proving that for generic $\left\{v_{1}, \ldots, v_{R}\right\} \in X$, the intersection of $\operatorname{Im}\left(\Psi_{X}^{d}\right)$ with $\operatorname{span}\left\{P_{V, d}^{\vee}\left(v_{a_{1}} \otimes \cdots \otimes v_{a_{d}}\right): 1 \leq a_{1} \leq \cdots \leq a_{d} \leq R\right.$ and not all a_{i} are equal $\}$ is zero.
- Compare with the genericity theorem in the $U \cap X=\{0\}$ algorithm: Reduces to proving that $\operatorname{lm}\left(\Psi_{X}^{d}\right) \cap S^{d}(U)=\{0\}$ for generic $\left\{u_{1}, \ldots, u_{R}\right\} \in V$.

Conclusion

- Take home message 1: For an arbitrary variety $X \subseteq \mathbb{C}^{N}$, we can efficiently certify $U \cap X=\{0\}$ for a generic subspace $U \subseteq \mathbb{C}^{N}$ of dimension not too large. (First level of Nullstellensatz certificate)
- Take home message 2: This inspires a hierarchy of eigenvalue computations to compute the Hausdorff distance between U and X. (Robust version of Nullstellensatz certificate)
- Take home message 3: Also inspires an algorithm for finding elements of $U \cap X$, with similar genericity guarantees.

Open problems:

- Non-generic inputs U ?
- Remove irreducibility/degree assumptions on the algorithm to find elements of $U \cap X$?

Nullstellensatz-inspired algorithms for certifying entanglement of subspaces

Nathaniel Johnston ${ }^{1}$ Benjamin Lovitz ${ }^{2}$ Aravindan Vijayaraghavan ${ }^{3}$

1. Mount Allison University and University of Guelph
2. NSF Postdoc, Northeastern University
3. Northwestern University

University of Western Ontario
November 30, 2022
arXiv:2210.16389
Northeastern
University

