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• A PVM 0 ≤ 𝑀 ≤ 𝐼!! on ℂ! ⊗ℂ! is an entanglement witness ⟺
Im 𝑀 ⊆ ℂ! ⊗ℂ! is 1-entangled

• For a density operator 𝜌 ∈ 𝐷(ℂ! ⊗ℂ!),
Im(𝜌) 1-entangled  ⇒ 𝜌 is entangled

• Quantum error correction

Tr 𝑀𝜌 < 1 for every separable state 𝜌

range criterion

Def: 𝑈 ⊆ ℂ"⊗ℂ" is 1-entangled if 𝑈 ∩ 𝑋# = {0}.

𝑋" = {𝑣 ⊗𝑤: 𝑣, 𝑤 ∈ ℂ!} ⊆ ℂ! ⊗ℂ!

Applications:
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𝑋! = {𝑢 ⊗ 𝑣 ⊗𝑤 ∶ 𝑢, 𝑣, 𝑤 ∈ ℂ"}

𝑇
dist 𝑇, 𝑋!

Application: Computing the Geometric measure 
of entanglement/Injective tensor norm

𝑇 ∈ ℂ)⊗ℂ)⊗ℂ)

[Harrow and Montanaro, 2013]: 21 equivalent or closely related 
problems in quantum info and computer science, including:
Determining acceptance probability of QMA(2) protocols
Determining ground-state energy of mean-field Hamiltonians
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Connection between finding elements of 𝑈 ∩ 𝑋" and decomposing tensors
Let 𝑇 ∈ ℂ! ⊗ℂ! ⊗ℂ# be a tensor.

If 𝑇 ℂ# has a basis of the form {𝑥"⊗𝑦", … , 𝑥$ ⊗𝑦$} ⊆ ℂ! ⊗ℂ! ,

Then 𝑇 = ∑%&"$ 𝑥% ⊗𝑦% ⊗ 𝑧% , where       𝑧% = 𝑇( 𝑥% ⊗𝑦% ∗).

…So, algorithms for finding elements of 𝑇 ℂ# ∩ 𝑋" lead to 
tensor decomposition algorithms

If 𝑥"⊗𝑦", … , 𝑥$ ⊗𝑦$ are the only elements of 𝑇 ℂ# ∩ 𝑋" (up to scale), 
then 𝑇 = ∑%&"$ 𝑥% ⊗𝑦% ⊗ 𝑧% is the unique rank decomposition of 𝑇.



𝑋

𝑈

1. Certify 𝑈 ∩ 𝑋 = {0}
2. Compute dist(𝑈, 𝑋)
3. Find elements of 𝑈 ∩ 𝑋 (and show 

that these are the only ones)

Describe 𝑈 ∩ 𝑋?

𝑋 ⊆ ℂ! a conic variety
𝑈 ⊆ ℂ! a linear subspace

This talk: These 
problems are easy* if 𝑈
is generic and dim(𝑈)

is not too large



Intersecting a subspace with a variety

• Let 𝑉 = ℂ!.

• 𝑋 ⊆ 𝑉 is a variety if it is cut out by some 𝑓#, … , 𝑓$ ∈ ℂ 𝑥#, … , 𝑥! , i.e.
𝑋 = {𝑣 ∈ 𝑉 ∶ 𝑓# 𝑣 = ⋯ = 𝑓$ 𝑣 = 0}

• 𝑋 is a conic variety if ℂ𝑋 = 𝑋.

Question: Given a (linear) subspace 𝑈 ⊆ 𝑉, describe 𝑈 ∩ 𝑋.



𝑋 ⊆ 𝑉 is a variety if it is cut out by some 𝑓", … , 𝑓( ∈ ℂ 𝑥", … , 𝑥) , i.e.
𝑋 = {𝑣 ∈ 𝑉 ∶ 𝑓" 𝑣 = ⋯ = 𝑓( 𝑣 = 0}

Example:     𝑋" = {𝑣 ∈ ℂ! ⊗ℂ! ∶ rank 𝑣 ≤ 1} ⊆ ℂ! ⊗ℂ!

rank 𝑎 𝑏
𝑏 𝑐 ≤ 1 ⟺ det 𝑎 𝑏

𝑏 𝑐 ≔ 𝑎𝑐 − 𝑏𝑑 = 0

𝑛×𝑛 matrix has rank ≤ 1 ⟺ determinant of every 2×2 submatrix is zero

So 𝑋" is cut out by 𝑝 = !
*
*

homogeneous polynomials of degree 𝑑 = 2



Other examples…
• Schmidt rank ≤ 𝑟 vectors:
𝑋* = {𝑣 ∈ ℂ)⊗ℂ): rank 𝑣 ≤ 𝑟}

• Product tensors: 𝑋+ = {𝑣+⊗⋯⊗𝑣,: 𝑣+, … , 𝑣, ∈ ℂ)}

• Biseparable tensors:
𝑋- = {𝑇 ∈ ℂ) ⊗/: Some flattening of 𝑇 has rank 1}

• Slice rank 1 tensors
𝑋0 = {𝑇 ∈ ℂ) ⊗/: Some 1 v.s. all flattening of 𝑇 has rank 1}

• Matrix product states



Outline

Given a conic variety 𝑋 ⊆ ℂ) and a linear subspace 𝑈 ⊆ ℂ) , describe 𝑈 ∩ 𝑋.
Algorithms to describe 𝑈 ∩ 𝑋
1. Algorithm to certify 𝑈 ∩ 𝑋 = {0}.
2. Algorithm to determine dist(𝑈, 𝑋).
3. Algorithm to recover elements of 𝑈 ∩ 𝑋.



𝑋

𝑈

Part 1: Algorithm to certify 𝑈 ∩ 𝑋 = {0}
Input:
1. Polynomials 𝑓", … , 𝑓( ∈ ℂ 𝑥", … , 𝑥) that 

cut out 𝑋.
2. A basis {𝑢", … , 𝑢$} for 𝑈.

Output: Proof that 𝑈 ∩ 𝑋 = {0}



Question: Given a (linear) subspace 𝑈 ⊆ 𝑉, certify 𝑈 ∩ 𝑋 = {0}.

Example: 𝑋# = {𝑣 ∈ ℂ"⊗ℂ": rank 𝑣 ≤ 1}

We say 𝑈 ⊆ ℂ"⊗ℂ" is 1-entangled if 𝑈 ∩ 𝑋# = {0}.

• [Buss et al 1999]: Determining whether 𝑈 is 1-entangled is NP-Hard

• [Barak et al 2019]: Best known algorithm for determining                           
1-entanglement requires 𝜖-promise and takes 2 %& "/( time.
• Theorem [JLV 2022]: Polynomial time algorithm if dim(𝑈) is small 

enough and 𝑈 is generic.

Schmidt rank



Theorem [JLV]:  Case of  𝑋" = {𝑣 ∈ ℂ! ⊗ℂ!: rank 𝑣 ≤ 1}
For a generic linear subspace 𝑈 ⊆ ℂ! ⊗ℂ! of dimension

dim 𝑈 ≤
1
4
𝑛 − 1 *

it holds that 𝑈 ∩ 𝑋" = {0}, and our algorithm certifies this in time 𝑛+ " .

Analytic definition: If {𝑢", … , 𝑢$} ∈ ℂ! ⊗ℂ! are chosen independently at 
random according to e.g. the uniform spherical measure, then with 
probability 1…
Algebraic definition: There is a Zariski open dense subset 𝐴 ⊆ ℂ! ⊗ℂ! ×$

such that…

Constant multiple of 
maximum possible 𝑛 − 1 1



Algorithm performance to certify 𝑈 ∩ 𝑋C = {0}

Table 1 provides some numerics that show the maximum dimension of an r-entangled sub-
space that can be certified by Theorem 2 (which, in all cases displayed, is equal to the largest value
of dS for which Inequality (8) holds) in various local dimensions, as well as the amount of time
that it takes our code to certify such a subspace on a standard desktop computer. The subspaces
that we checked to obtain these timings have a form that is similar to that of the subspace from
Example 4.

r = 1 r = 2

dA = dB max. dS time max. dS time

3 3 0.01 s 1 0.03 s
4 8 0.03 s 3 0.19 s
5 13 0.08 s 7 0.65 s
6 20 0.20 s 12 2.38 s
7 29 0.49 s 18 8.17 s
8 39 1.06 s 25 27.46 s
9 50 2.24 s 33 1.78 min
10 63 5.56 s 43 14.62 min

Table 1: The maximum dimension dS of a subspace of HA ⌦ HB that can be certified to be r-
entangled by the first level of the hierarchy (i.e., Theorem 2), as well as the time required to do the
certification, for small values of dA = dB and r. In all cases shown here, the maximum dimension
is the largest dS for which Inequality (8) holds.

2.2 The Rest of the Hierarchy

For an integer k � 1, the k-th level of the hierarchy is based on the following linear map acting on
(HA ⌦HB)⌦(r+k):

Fk
r ,

�
P^

A,r+1 ⌦ P^

B,r+1 ⌦ IAB,k�1
�

P_

AB,r+k, (9)

where IAB,k�1 is the identity on (HA ⌦ HB)⌦(k�1) and P_

AB,r+k is the projection onto the
(dAdB+r+k�1

r+k )-dimensional symmetric subspace of (HA ⌦ HB)⌦(r+k) (i.e., the symmetrization is
performed between the r + k copies of HA ⌦HB, but not between HA and HB).

In the k = 1 case, Fk
r is exactly the same as the linear map F1

r from Equation (1), which can
be seen by noting that range(P^

A,r+1 ⌦ P^

B,r+1) ✓ range(P_

AB,r+1). Theorem 2 still works if F1
r is re-

placed by Fk
r , but we now furthermore get a converse that completely characterizes all r-entangled

subspaces:

Theorem 6. Let S ✓ HA ⌦HB be a subspace with basis {|x1i, . . . , |xdS i}. Then S is r-entangled if and
only if there exists an integer 1  k  (max{r, 2}+ 1)dAdB � r such that the set

n
Fk

r
�
|xj1 i ⌦ · · ·⌦ |xjr+k i

�
: 1  j1  · · ·  jr+k  dS

o
(10)

is linearly independent. Furthermore, if a subspace S is certified to be r-entangled at the k-th level of the hi-
erarchy (i.e., if the set (10) is linearly independent), then a generic dS-dimensional subspace will be certified
at the k-th level.

7

𝑛 dim U time



Theorem [JLV]: Suppose that 𝑋 ⊆ ℂ! is a conic variety cut out by 
𝑝 = 𝛿 !)*+#

* linearly independent homogeneous degree-𝑑
polynomials 𝑓#, … , 𝑓$ ∈ ℂ 𝑥#, … , 𝑥! * for some 𝛿 ∈ 0,1 .

Then for a generic linear subspace 𝑈 ⊆ ℂ! of dimension

dim 𝑈 ≤
𝑁 + 𝑑 − 1

𝑑!
𝛿,

it holds that 𝑈 ∩ 𝑋 = {0}, and there is an algorithm that certifies 
this in time 𝑁& * .

More general statement for arbitrary 𝑋



Theorem [JLV]: If 𝑋 ⊆ ℂ! is  cut out by 𝑝 = 𝛿 !)*+#
* linearly 

independent homogeneous degree-𝑑 polynomials, then for a 
generic linear subspace 𝑈 ⊆ ℂ! of dimension

dim 𝑈 ≤
𝑁 + 𝑑 − 1

𝑑!
𝛿,

it holds that 𝑈 ∩ 𝑋 = {0}, and there is an algorithm that certifies 
this in time 𝑁& * .

Example: If 𝑑 = 1, then 𝑋 ⊆ ℂ! is a linear subspace. Theorem says:
If 𝑈 ⊆ ℂ!generic         and           dim 𝑈 ≤ 𝛿𝑁 = 𝑝 = 𝑁 − dim 𝑋 ,   
Then 𝑈 ∩ 𝑋 = {0}, and this can be verified in poly(𝑁) time.

Not bad: Takes )-./"
. time just to read off degree-𝑑

polynomials



Theorem [JLV]: If 𝑋 ⊆ ℂ! is  cut out by 𝑝 = 𝛿 !)*+#
* linearly 

independent homogeneous degree-𝑑 polynomials, then for a 
generic linear subspace 𝑈 ⊆ ℂ! of dimension

dim 𝑈 ≤
𝑁 + 𝑑 − 1

𝑑!
𝛿,

it holds that 𝑈 ∩ 𝑋 = {0}, and there is an algorithm that certifies 
this in time 𝑁& * .

Fact: For a conic variety 𝑋 ⊆ ℂ! , if there exists 𝑈 ⊆ ℂ! such that 
𝑈 ∩ 𝑋 = {0}, then dim 𝑋 ≤ 𝑁 − dim 𝑈 .

Corollary: dim 𝑋 ≤ 𝑁 − !)*+#
*!

𝛿 = 𝑁 − !)*+#
*!

(1 − -! *
"#$%&

$
)

Krull dimension of 𝑋
Hilbert function of 𝑋

Maximize 𝛿



Again: An upper bound on 𝐝𝐢𝐦(𝑿)

Corollary:
For a conic variety 𝑋 ⊆ ℂK,

dim 𝑋 ≤ 𝑁 − KLMNC
M!

1 − O# M
$%&'(

&
for all 𝑑 ≥ 1.



Other examples…
• Schmidt rank ≤ 𝑟 vectors:
𝑋* = {𝑣 ∈ ℂ)⊗ℂ): rank 𝑣 ≤ 𝑟}

• Product tensors: 𝑋+ = {𝑣+⊗⋯⊗𝑣/: 𝑣+, … , 𝑣/ ∈ ℂ)}

• Biseparable tensors:
𝑋- = {𝑇 ∈ ℂ) ⊗/: Some flattening of 𝑇 has rank 1}

• Slice rank 1 tensors
𝑋0 = {𝑇 ∈ ℂ) ⊗/: Some 1 v.s. all flattening of 𝑇 has rank 1}

• Matrix product states:

dim 𝑈 = Ω* 𝑛1

dim 𝑈 ~
1
4
𝑛/

dim 𝑈 ~
1
4
𝑛/

dim 𝑈 ~
1
4
𝑛/

dim 𝑈 ~
1
4
𝑛/

All in poly(N) time



The Algorithm 
(Nullstellensatz Certificate)



𝑋

𝑈

Part 1: Algorithm to certify 𝑈 ∩ 𝑋 = {0}
Input:
1. Polynomials 𝑓", … , 𝑓( ∈ ℂ 𝑥", … , 𝑥) that 

cut out 𝑋.
2. A basis {𝑢", … , 𝑢$} for 𝑈.

Output: Proof that 𝑈 ∩ 𝑋 = {0}



The symmetric subspace

Let 𝑆) 𝑉 ⊆ 𝑉⊗) be the symmetric subspace

𝑆. 𝑉 ={𝑇 = 𝑇%",…,%# %$∈ )
∈ 𝑉⊗.: 𝑇 = 𝑇%% " ,…,%% # %$∈ )

for all 𝜎 ∈ 𝔖.}

𝑃),,∨ : 𝑉⊗) → 𝑉⊗) orthogonal projection onto 𝑆) 𝑉



A characterization of conic varieties

Fact/Definition: For a subset 𝑋 ⊆ 𝑉, the following are equivalent:
1. 𝑋 is a conic variety
2. There exists 𝑑 ∈ ℕ and an orthogonal projection Ψ.*: 𝑉⊗* → 𝑉⊗*

such that:
i. Ψ.) is symmetric: Im Ψ.) ⊆ 𝑆)(𝑉)
ii. 𝑋 = {𝑣 ∈ 𝑉: 𝑣⊗) ∈ Im Ψ.) }

Why? If 𝑋 is cut out by 𝑓#, … , 𝑓$ ∈ 𝑆* 𝑉∗ , let 

𝑣 ∈ 𝑋 ⟺ 𝑓# 𝑣⊗* = ⋯ = 𝑓$ 𝑣⊗* = 0 ⟺ 𝑣⊗* ∈ Im Ψ.*

Ψ23 = Proj B
45+

6

Ker 𝑓4

𝑆. 𝑉∗ ≅ 𝔽 𝑥", … , 𝑥) .



Question: Given a conic variety 𝑋 = {𝑣 ∈ 𝑉: 𝑣⊗* ∈ Im Ψ.* } ⊆ 𝑉
and a basis {𝑢#, … , 𝑢1} for a subspace 𝑈 ⊆ ℂ! , is 𝑈 ∩ 𝑋 = {0}?

Algorithm:
1. If Im Ψ.* ∩ 𝑆* 𝑈 = {0}, output 𝑈 ∩ 𝑋 = {0}
2. Otherwise, output I DON’T KNOW

Correctness: If Im Ψ.* ∩ 𝑆* 𝑈 = {0}, then 𝑈 ∩ 𝑋 = {0}.
Proof: If 𝑢 ∈ 𝑈 ∩ 𝑋, then 𝑢⊗* ∈ Im(Ψ.*) ∩ 𝑆* 𝑈 .

𝑆. 𝑈 = 𝑈⊗. ∩ 𝑆. 𝑉
= span{𝑃.,4∨ 𝑢%" ⊗⋯⊗𝑢%# : 1 ≤ 𝑖" ≤ ⋯ ≤ 𝑖. ≤ 𝑅}



Theorem [JLV]: If 𝑋 ⊆ ℂ! is  cut out by 𝑝 = 𝛿 !)*+#
* linearly 

independent homogeneous degree-𝑑 polynomials, then for a 
generic linear subspace 𝑈 ⊆ ℂ! of dimension

dim 𝑈 ≤
𝑁 + 𝑑 − 1

𝑑!
𝛿,

it holds that Im Ψ.* ∩ 𝑆* 𝑈 = {0}.

Proof idea: Given a subspace 𝑊:= Im Ψ.* ⊆ 𝑆*(ℂ!), show that a 
(generic) subspace of the form 𝑆*(𝑈), for dim 𝑈 not too large, 
satisfies 𝑊 ∩ 𝑆* 𝑈 = {0}.

(1)



Proof idea: Given a subspace 𝑊 ⊆ 𝑆.(ℂ)), show that a (generic) subspace 
of the form 𝑆.(𝑈), for dim 𝑈 not too large, satisfies 𝑊 ∩ 𝑆. 𝑈 = {0}.

One might hope that you could take 𝑅 ≔ dim 𝑈 maximal for which

dim 𝑊 +
𝑁 + 𝑅 − 1

𝑅
≤

𝑁 + 𝑑 − 1
𝑑

dim(𝑆3(ℂ7))dim(𝑆3(𝑈))



Proof idea: Given a subspace 𝑊 ⊆ 𝑆.(ℂ)), show that a (generic) subspace 
of the form 𝑆.(𝑈), for dim 𝑈 not too large, satisfies 𝑊 ∩ 𝑆. 𝑈 = {0}.

One might hope that you could take 𝑅 ≔ dim 𝑈 maximal for which

dim 𝑊 +
𝑁 + 𝑅 − 1

𝑅
≤

𝑁 + 𝑑 − 1
𝑑

3                      3                          6

Not true! Take 𝑁 = 3, 𝑑 = 2,            𝑊 = 𝑆* ℂ* ⊆ 𝑆* (ℂ6).

Then for any 𝑈 ⊆ ℂ6 of dimension dim 𝑈 = 2, it holds that            
𝑆* ℂ* ∩ 𝑆* 𝑈 ⊇ 𝑆* ℂ* ∩ 𝑈 ≠ {0}



Question: Given a conic variety 𝑋 = {𝑣 ∈ 𝑉: 𝑣⊗* ∈ Im Ψ.* } ⊆ 𝑉
and a basis {𝑢#, … , 𝑢1} for a subspace 𝑈 ⊆ ℂ! , is 𝑈 ∩ 𝑋 = {0}?

Complete hierarchy:
1. For 𝑐 ≥ 𝑑, let Ψ.2 = Ψ.* ⊗ 𝐼3

⊗2+* : 𝑉⊗2 → 𝑉⊗2

2. If Im Ψ.2 ∩ 𝑆2 𝑈 = {0} for some 𝑐 ≤ 𝑑 + 1 !, output YES
3. Otherwise, output NO

Correctness:
Im Ψ.2 ∩ 𝑆2 𝑈 = {0} for some 𝑐 ≤ 𝑑 + 1 ! ⟺ 𝑈∩ 𝑋 = {0}
Proof: ⇒: For any 𝑢 ∈ 𝑈 ∩ 𝑋, it holds that 𝑢⊗2 ∈ Im Ψ.2 ∩ 𝑆2 𝑈 .

⇐: Hilbert’s Nullstellensatz + degree bounds



Outline

Given a conic variety 𝑋 ⊆ ℂ) and a linear subspace 𝑈 ⊆ ℂ) , describe 𝑈 ∩ 𝑋.
Algorithms to describe 𝑈 ∩ 𝑋
1. Algorithm to certify 𝑈 ∩ 𝑋 = {0}.
2. Algorithm to determine dist(𝑈, 𝑋).
3. Algorithm to recover elements of 𝑈 ∩ 𝑋.



𝑋

𝑈

dist 𝑈, 𝑋

We have a complete hierarchy of lower bounds on dist 𝑈, 𝑋

Part 2: Algorithm to determine dist(𝑈, 𝑋)
Input:
1. Polynomials 𝑓", … , 𝑓( ∈ ℂ 𝑥", … , 𝑥) that 

cut out 𝑋.
2. A basis {𝑢", … , 𝑢$} for 𝑈.

Output: Lower bound on dist(𝑈, 𝑋)



Making the algorithm robust

Observation:
Im Ψ78 ∩ 𝑆8 𝑈 = {0} ⟺ 𝜆#9: 𝑃.,4∨ Ψ78(𝑃;⊗ 𝐼4

⊗8/") < 1

Proof:

𝜆#9: 𝑃.,4∨ Ψ78(𝑃;⊗ 𝐼4
⊗8/") < 1
⟺ 𝑆. 𝑉 ∩ Im Ψ78 ∩ 𝑈⊗ 𝑉⊗8/" = {0}
⟺ Im Ψ78 ∩ 𝑆8 𝑈 = {0}



Making the algorithm robust

Observation:
Im Ψ78 ∩ 𝑆8 𝑈 = {0} ⟺ 𝜈8 ≔ 𝜆#9: 𝑃.,4∨ Ψ78(𝑃;⊗ 𝐼4

⊗8/")Ψ78𝑃.,4∨ < 1

Proof:
𝜈8 < 1

⟺ 𝑆. 𝑉 ∩ Im Ψ78 ∩ 𝑈⊗ 𝑉⊗8/" = {0}
⟺ Im Ψ78 ∩ 𝑆8 𝑈 = {0}



Question: Given a conic variety 𝑋 = {𝑣 ∈ 𝑉: 𝑣⊗* ∈ Im Ψ.* } ⊆ 𝑉
and a basis {𝑢#, … , 𝑢1} for a subspace 𝑈 ⊆ ℂ! , is 𝑈 ∩ 𝑋 = {0}?

Complete hierarchy:
1. If 𝜈2 < 1 for some 𝑐 ≤ 𝑑 + 1 !, output YES
2. Otherwise, output NO

Correctness:
𝜈2 < 1 ⟺ Im Ψ.2 ∩ 𝑆2 𝑈 = {0}

𝜈" ≔ 𝜆#$% 𝑃&,(∨ Ψ*"(𝑃+⊗ 𝐼(
⊗"-!)Ψ*"𝑃&,(∨



Robust version
Question: Given a conic variety 𝑋 = {𝑣 ∈ 𝑉: 𝑣⊗. ∈ Im Ψ7. } ⊆ 𝑉
and a basis {𝑢", … , 𝑢$} for a subspace 𝑈 ⊆ 𝔽) , what is dist 𝑈, 𝑋 ?

dist 𝑈, 𝑋 = "
<
min
&∈(
& )"

min
*∈+
* )"

𝑥𝑥∗ − 𝑢𝑢∗ "
*

= 1 − max
&∈(
& )"

max
*∈+
* )"

𝑥, 𝑢 *

= 1 − max
&∈(
& )"

⟨𝑥, 𝑃;𝑥⟩

Hausdorff distance



Question: Given a conic variety 𝑋 = {𝑣 ∈ 𝑉: 𝑣⊗* ∈ Im Ψ.* } ⊆ 𝑉
and a basis {𝑢#, … , 𝑢1} for a subspace 𝑈 ⊆ ℂ! , what is dist 𝑈, 𝑋 ?

Theorem [JLV]:
• 𝜈2 < 1 for some 𝑐 ≤ 𝑑 + 1 ! if	and	only	if	𝑈 ∩ 𝑋 = {0}
• dist 𝑈, 𝑋 ≥ 1 − 𝜈2 for all 𝑐 (inner	approximation)
• dist 𝑈, 𝑋 = 1 − lim

2→5
𝜈2

𝜈@ ≔ 𝜆/AB 𝑃3,C∨ Ψ2@(𝑃E⊗ 𝐼C
⊗@F+)Ψ2@𝑃3,C∨



𝑋

𝑈

dist 𝑈, 𝑋

Computing upper bounds on dist 𝑈, 𝑋 is easy… 
dist 𝑈, 𝑋 ≤ dist(𝑢, 𝑥) for any 𝑥 ∈ 𝑋, 𝑢 ∈ 𝑈

We have a complete hierarchy of lower bounds on dist 𝑈, 𝑋



Theorem [JLV]:
• 𝜈2 = 1 for all 𝑐 ≤ 𝑑 + 1 ! ⟺ dist 𝑈, 𝑋 = 0
• 𝜈* ≥ 𝜈*)# ≥ 𝜈*)6 ≥ ⋯
• 1 − dist 𝑈, 𝑋 = lim

2→5
𝜈2

Proof:
Im 𝑃.,4∨ Ψ78 ⊇ span{𝑣⊗8: 𝑣 ∈ 𝑋},           so for all 𝑣 ∈ 𝑋,

𝑣8 ≥ ⟨𝑣⊗8 , 𝑃.,4∨ Ψ78(𝑃;⊗ 𝐼4
⊗8/")Ψ78𝑃.,4∨ 𝑣⊗8⟩

= ⟨𝑣⊗8 , 𝑃; ⊗ 𝐼4
⊗8/" 𝑣⊗8⟩

= ⟨𝑣, 𝑃; 𝑣⟩
… So 𝑣8 ≥ max

=∈7
𝑣, 𝑃;𝑣 = 1 − dist(𝑈, 𝑋)

𝜈@ ≔ 𝜆/AB 𝑃3,C∨ Ψ2@(𝑃E⊗ 𝐼C
⊗@F+)Ψ2@𝑃3,C∨

In particular,  1 − dist 𝑈, 𝑋 ≤ 𝜈2 for all 𝑐 (inner approximation)



Outline

Given a conic variety 𝑋 ⊆ ℂ) and a linear subspace 𝑈 ⊆ ℂ) , describe 𝑈 ∩ 𝑋.
Algorithms to describe 𝑈 ∩ 𝑋
1. Algorithm to determine whether 𝑈 ∩ 𝑋 = {0}.
2. Algorithm to determine dist(𝑈, 𝑋).
3. Algorithm to recover elements of 𝑈 ∩ 𝑋.



𝑋

𝑈

Part 3: Algorithm to recover elements of 𝑈 ∩ 𝑋
Input:
1. Polynomials 𝑓", … , 𝑓( ∈ ℂ 𝑥", … , 𝑥) that 

cut out 𝑋.
2. A basis {𝑢", … , 𝑢$} for 𝑈.

Output: A set of points {𝑣", … , 𝑣>} ∈ 𝑈 ∩ 𝑋, 
and a proof that these are the only elements 
(up to scalar multiples).



The Algorithm (Inspired by 
Nullstellensatz Certificate)



Recall the algorithm to determine if 𝑈 ∩ 𝑋 = {0}…

Algorithm:
1. If Im Ψ.* ∩ 𝑆* 𝑈 = {0}, output 𝑈 ∩ 𝑋 = {0}
2. Otherwise, output I DON’T KNOW

Idea: To find vectors in 𝑈 ∩ 𝑋, look at the vectors in Im Ψ.* ∩ 𝑆* 𝑈 .
If 𝑣 = ∑78#1 𝛼7𝑢7 ∈ 𝑈 ∩ 𝑋, then

𝑣⊗* = l
7&,…,7$

𝛼7&⋯𝛼7$ 𝑢7& ⊗⋯⊗𝑢7$ ∈ Im Ψ.* ∩ 𝑆* 𝑈

𝑆. 𝑈 = 𝑈⊗. ∩ 𝑆. 𝑉
= span{𝑃.,4∨ 𝑢%" ⊗⋯⊗𝑢%# : 1 ≤ 𝑖" ≤ ⋯ ≤ 𝑖. ≤ 𝑅}

The tensor of coefficients 𝛼⊗. ∈ (ℂ$)⊗. is a (symmetric) product tensor!
Take-home: vectors in    𝑈 ∩ 𝑋 ↔ sym. prod. tensors 𝛼%"…%# that solve (1) 

(1)



Algorithm to find elements of 𝑈 ∩ 𝑋

1. Compute a basis {𝐴", … , 𝐴$,} ⊆ (ℂ$)⊗. for the set of tensors 𝛼 ∈ 𝑆.(ℂ$)
s.t.

}
%",…,%#

𝛼%",…,%# 𝑢%" ⊗⋯⊗𝑢%# ∈ Im Ψ7. ∩ 𝑆. 𝑈

2.   Find the symmetric product tensors in span{𝐴", … , 𝐴$,} ⊆ (ℂ$)⊗.

New 𝑈!New 𝑋!

Run Jennrich’s algorithm



Jennrich’s Algorithm
Input: A basis {𝐴", … , 𝐴$} for a subspace Z ⊆ ℂ$ ⊗ℂ? of dimension 𝑅 ≤ 𝑆

If 𝑍 has a basis of the form {𝑥"⊗𝑦", … , 𝑥$ ⊗𝑦$},

where {𝑥", … , 𝑥$} and {𝑦", … , 𝑦$} are linearly independent

Then 𝑥"⊗𝑦", … , 𝑥$ ⊗𝑦$ are the only elements of 𝑈 ∩ 𝑋", and Jennrich’s
algorithm outputs these elements. Otherwise, it outputs FAIL.

Note: This version of Jennrich can only handle dim 𝑍 ≤ 𝑅, whereas our 
“lifted Jennrich” can do dim 𝑍 ≤ Ω 𝑅*



Theorem [JLV]:  Case of  𝑋" = {𝑣 ∈ ℂ! ⊗ℂ!: rank 𝑣 ≤ 1}
For a generic linear subspace 𝑈 ⊆ ℂ! ⊗ℂ! of dimension

𝑅 ≤
1
4
𝑛 − 1 *

it holds that 𝑈 ∩ 𝑋" = {0}, and our algorithm certifies this in time 𝑛+ " .

Moreover, for a generic subspace 𝑈 ⊆ ℂ! ⊗ℂ! of this dimension with a basis of 
generic elements of 𝑋", our algorithm recovers these elements in time 𝑛+ " , and 
certifies that these are the only elements of 𝑈 ∩ 𝑋".

Constant multiple of 
maximum possible 𝑛 − 1 1

Analytic def: ”If you pick 𝑣", … , 𝑣$ ∈ 𝑋" randomly…”
Algebraic def: There is a Zariski open dense subset 𝐴 ⊆ 𝑋"×$ such that…



Corollary: A generic tensor 𝑇 ∈ ℂ"⊗ℂ"⊗ℂ/ with

rank 𝑇 =: 𝑅 ≤ min{
1
4 𝑛 − 1 0, 𝑚}

has a unique rank decomposition, which is recovered by 
applying our algorithm to 𝑇 ℂ/ .

Analytic def: 𝑇 = ∑78#1 𝑥7 ⊗𝑦7 ⊗ 𝑧7 , where each 𝑥7 ⊗𝑦7 ⊗ 𝑧7 is 
chosen randomly.

Algebraic def: There is a Zariski open dense subset 𝐴 ⊆ {rank ≤
𝑅 tensors}



Theorem [JLV]: If 𝑋 ⊆ ℂ! is irreducible, cut out by 𝑝 = 𝛿 !)*+#
*

linearly independent homogeneous degree-𝑑 polynomials, and 
has no equations in degree 𝑑 − 1, then for a linear subspace 𝑈 ⊆
ℂ! of dimension

𝑅 ≤
𝑁 + 𝑑 − 1

𝑑!
𝛿,

with a basis of generic elements of 𝑋, our algorithm recovers these 
elements in time 𝑁& * .

Algebraic def: There is a Zariski open dense subset 𝐴 ⊆ 𝑋×$ s.t…



𝑋, ℂ! -decompositions (aka simult. X-decomp)

For 𝑇 ∈ 𝑉 ⊗ ℂ/, an expression

where 𝑣+, … , 𝑣H ∈ 𝑋

we call an 𝑋, ℂ/ -decomposition of T.

rankI 𝑇 := min{ 𝑅: there exists an 𝑋, ℂ/ −decomposi[on of T of length R}

𝑇 =B
!"#

$

𝑣!⊗𝑧! ∈ 𝑉 ⊗ ℂ%



Corollary: A generic tensor 𝑇 ∈ 𝑉 ⊗ ℂ/ with

rank1 𝑇 ≤ min{
𝑁 + 𝑑 − 1

𝑑! 𝛿,𝑚}

has a unique 𝑋, ℂ/ -decomposition, which is recovered by 
applying our algorithm to 𝑇 ℂ/ .



Other examples…
• Schmidt rank ≤ 𝑟 vectors:
𝑋* = {𝑣 ∈ ℂ)⊗ℂ): rank 𝑣 ≤ 𝑟}

• Product tensors: 𝑋+ = {𝑣+⊗⋯⊗𝑣,/1: 𝑣+, … , 𝑣,/1 ∈ ℂ)}

• Biseparable tensors:
𝑋- = {𝑇 ∈ ℂ) ⊗/: Some flattening of 𝑇 has rank 1}

• Slice rank 1 tensors

𝑋0 = {𝑇 ∈ ℂ) ⊗/: Some 1 v.s. all flattening of 𝑇 has rank 1}

Recover 𝑋*, ℂ/ − decompositions of rank Ω* 𝑛1

Recover tensor decompositions in ℂ) ⊗,

of rank ~𝑛,/1

Not irreducible!



Other examples…
• Schmidt rank ≤ 𝑟 vectors:
𝑋* = {𝑣 ∈ ℂ)⊗ℂ): rank 𝑣 ≤ 𝑟}

• Product tensors: 𝑋+ = {𝑣+⊗⋯⊗𝑣,: 𝑣+, … , 𝑣/ ∈ ℂ)}

Related work:
[De Lathauwer, Castaing Cardoso 2007]: Algorithm to decompose symmetric fourth-order tensors
[De Lathauwer 2008]: Algorithm for (𝑋*, ℂ/)-decompositions (also known as “block-term 
decompositions” and “𝑟-aided ranks”)

Recover 𝑋*, ℂ/ − decompositions of rank Ω* 𝑛1

Recover tensor decompositions in ℂ) ⊗,

of rank ~𝑛,/1



Conclusion
• Take home message 1: For an arbitrary variety 𝑋 ⊆ ℂ7, we can efficiently certify
𝑈 ∩ 𝑋 = {0} for a generic subspace 𝑈 ⊆ ℂ7 of dimension not too large. (First 
level of Nullstellensatz certificate)

• Take home message 2: This inspires a hierarchy of eigenvalue computations to 
compute the Hausdorff distance between 𝑈 and 𝑋. (Robust version of 
Nullstellensatz certificate)

• Take home message 3: Also inspires an algorithm for finding elements of 𝑈 ∩ 𝑋, 
with similar genericity guarantees.

Open problems:
• Non-generic inputs 𝑈?
• Remove irreducibility/degree assumptions on the algorithm to find elements of 
𝑈 ∩ 𝑋?
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