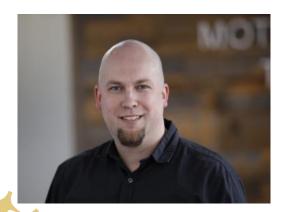
Computing linear sections of varieties: quantum entanglement, tensor decompositions and beyond

Benjamin Lovitz²

Nathaniel Johnston¹



1. Mount Allison University and University of Guelph

2. NSF Postdoc, Northeastern University

3. Northwestern University

IPAM TMRC1

December 14, 2022

Aravindan Vijayaraghavan³

LVX VERITAS Northeastern University $X \subseteq \mathbb{C}^N \text{ a conic variety}$ $U \subseteq \mathbb{C}^N \text{ a linear subspace}$ $\mathsf{Describe} \ U \cap X?$

X

IJ

 $X \subseteq \mathbb{C}^N \text{ a conic variety}$ $U \subseteq \mathbb{C}^N \text{ a linear subspace}$ $\mathsf{Describe} \ U \cap X?$

X

Certify U ∩ X = {0}
 Compute dist(U, X)
 Find elements of U ∩ X (and show that these are the only ones)

Π

 $X \subseteq \mathbb{C}^{N} \text{ a conic variety}$ $U \subseteq \mathbb{C}^{N} \text{ a linear subspace}$ $\mathsf{Describe} \ U \cap X?$

X

1. Certify U ∩ X = {0}
2. Compute dist(U, X)
3. Find elements of U ∩ X (and show that these are the only ones)

Π

 $X_1 = \{v \otimes w : v, w \in \mathbb{C}^n\} \subseteq \mathbb{C}^n \otimes \mathbb{C}^n$ <u>Def:</u> $U \subseteq \mathbb{C}^n \otimes \mathbb{C}^n$ is 1-entangled if $U \cap X_1 = \{0\}$.

Applications:

• A PVM $0 \le M \le I_{n^2}$ on $\mathbb{C}^n \otimes \mathbb{C}^n$ is an entanglement witness \Leftrightarrow Im $(M) \subseteq \mathbb{C}^n \otimes \mathbb{C}^n$ is 1-entangled

 $Tr(M\rho) < 1$ for every separable state ρ

• For a density operator $\rho \in D(\mathbb{C}^n \otimes \mathbb{C}^n)$,

 $Im(\rho)$ 1-entangled $\Rightarrow \rho$ is entangled range criterion

• Quantum error correction

 $X \subseteq \mathbb{C}^N \text{ a conic variety}$ $U \subseteq \mathbb{C}^N \text{ a linear subspace}$ $\mathsf{Describe} \ U \cap X?$

X

Certify U ∩ X = {0}
 Compute dist(U, X)
 Find elements of U ∩ X (and show that these are the only ones)

Application: Computing the Geometric measure of entanglement/Injective tensor norm

 $X_1 = \{ u \otimes v \otimes w : u, v, w \in \mathbb{C}^n \}$

[Harrow and Montanaro, 2013]: 21 equivalent or closely related problems in quantum info and computer science, including: Determining acceptance probability of QMA(2) protocols Determining ground-state energy of mean-field Hamiltonians

 $T \in \mathbb{C}^n \otimes \mathbb{C}^n \otimes \mathbb{C}^n$

 $X \subseteq \mathbb{C}^N \text{ a conic variety}$ $U \subseteq \mathbb{C}^N \text{ a linear subspace}$ $\mathsf{Describe} \ U \cap X?$

X

 Certify $U \cap X = \{0\}$ Compute dist(U, X) Find elements of $U \cap X$ (and show that these are the only ones)

Connection between finding elements of $U \cap X_1$ **and decomposing tensors** Let $T \in \mathbb{C}^n \otimes \mathbb{C}^n \otimes \mathbb{C}^m$ be a tensor.

If $T(\mathbb{C}^m)$ has a basis of the form $\{x_1 \otimes y_1, ..., x_R \otimes y_R\} \subseteq \mathbb{C}^n \otimes \mathbb{C}^n$,

Then
$$T = \sum_{i=1}^{R} x_i \otimes y_i \otimes z_i$$
, where $z_i = T((x_i \otimes y_i)^*)$.

...So, algorithms for finding elements of $T(\mathbb{C}^m) \cap X_1$ lead to tensor decomposition algorithms

If $x_1 \otimes y_1, ..., x_R \otimes y_R$ are the only elements of $T(\mathbb{C}^m) \cap X_1$ (up to scale), then $T = \sum_{i=1}^R x_i \otimes y_i \otimes z_i$ is the unique rank decomposition of T. $X \subseteq \mathbb{C}^N \text{ a conic variety}$ $U \subseteq \mathbb{C}^N \text{ a linear subspace}$ $\mathsf{Describe} \ U \cap X?$

This talk: These problems are easy* if U is generic and dim(U) is not too large

Certify U ∩ X = {0}
 Compute dist(U, X)
 Find elements of U ∩ X (and show that these are the only ones)

U

Intersecting a subspace with a variety

- Let $V = \mathbb{C}^N$.
- $X \subseteq V$ is a variety if it is cut out by some $f_1, \dots, f_p \in \mathbb{C}[x_1, \dots, x_N]$, i.e. $X = \{v \in V : f_1(v) = \dots = f_p(v) = 0\}$
- X is a conic variety if $\mathbb{C}X = X$.

<u>Question</u>: Given a (linear) subspace $U \subseteq V$, describe $U \cap X$.

 $X \subseteq V$ is a variety if it is cut out by some $f_1, \dots, f_p \in \mathbb{C}[x_1, \dots, x_N]$, i.e. $X = \{v \in V : f_1(v) = \dots = f_p(v) = 0\}$

<u>Example</u>: $X_1 = \{v \in \mathbb{C}^n \otimes \mathbb{C}^n : \operatorname{rank}(v) \le 1\} \subseteq \mathbb{C}^n \otimes \mathbb{C}^n$

$$\operatorname{rank} \begin{bmatrix} a & b \\ b & c \end{bmatrix} \le 1 \quad \Leftrightarrow \quad \det \begin{bmatrix} a & b \\ b & c \end{bmatrix} \coloneqq ac - bd = 0$$

 $n \times n$ matrix has rank $\leq 1 \qquad \Leftrightarrow \qquad$ determinant of every 2×2 submatrix is zero

So X_1 is cut out by $p = {\binom{n}{2}}^2$ homogeneous polynomials of degree d = 2

Other examples...

- Schmidt rank $\leq r$ vectors:
- $X_r = \{ v \in \mathbb{C}^n \otimes \mathbb{C}^n : \operatorname{rank}(v) \le r \}$
- <u>Product tensors</u>: $X_1 = \{v_1 \otimes \cdots \otimes v_k : v_1, \dots, v_k \in \mathbb{C}^n\}$
- <u>Biseparable tensors:</u>

 $X_B = \{T \in (\mathbb{C}^n)^{\otimes m} : \text{Some flattening of } T \text{ has rank 1} \}$

• <u>Slice rank 1 tensors</u>

 $X_S = \{T \in (\mathbb{C}^n)^{\otimes m} : \text{Some 1 v.s. all flattening of } T \text{ has rank 1} \}$

Matrix product states

Outline

Given a conic variety $X \subseteq \mathbb{C}^N$ and a linear subspace $U \subseteq \mathbb{C}^N$, describe $U \cap X$. Algorithms to describe $U \cap X$

- Algorithm to certify $U \cap X = \{0\}$.
 - 2. Algorithm to determine dist(U, X).
 - 3. Algorithm to recover elements of $U \cap X$.

Part 1: Algorithm to certify $U \cap X = \{0\}$

Input:

1. Polynomials $f_1, ..., f_p \in \mathbb{C}[x_1, ..., x_N]$ that cut out *X*.

X

2. A basis $\{u_1, \dots, u_R\}$ for U.

<u>Output:</u> Proof that $U \cap X = \{0\}$

 \boldsymbol{U}

<u>Question</u>: Given a (linear) subspace $U \subseteq V$, certify $U \cap X = \{0\}$.

Example:
$$X_1 = \{v \in \mathbb{C}^n \otimes \mathbb{C}^n : \operatorname{rank}(v) \le 1\}$$

Schmidt rank

We say $U \subseteq \mathbb{C}^n \otimes \mathbb{C}^n$ is 1-entangled if $U \cap X_1 = \{0\}$.

- [Buss et al 1999]: Determining whether U is 1-entangled is NP-Hard
- [Barak et al 2019]: Best known algorithm for determining 1-entanglement requires ϵ -promise and takes $2^{\tilde{O}(\sqrt{n}/\epsilon)}$ time.
- Theorem [JLV 2022]: Polynomial time algorithm if dim(U) is small enough and U is generic.

<u>Theorem [JLV]: Case of $X_1 = \{v \in \mathbb{C}^n \otimes \mathbb{C}^n : \operatorname{rank}(v) \leq 1\}$ </u> For a generic linear subspace $U \subseteq \mathbb{C}^n \otimes \mathbb{C}^n$ of dimension $\dim(U) \le \frac{1}{4}(n-1)^2$ Constant multiple of maximum possible $(n-1)^2$ it holds that $U \cap X_1 = \{0\}$, and our algorithm certifies this in time $n^{O(1)}$. Analytic definition: If $\{u_1, \dots, u_R\} \in \mathbb{C}^n \otimes \mathbb{C}^n$ are chosen independently at random according to e.g. the uniform spherical measure, then with probability 1...

Algebraic definition: There is a Zariski open dense subset $A \subseteq (\mathbb{C}^n \otimes \mathbb{C}^n)^{\times R}$ such that...

Algorithm performance to certify $U \cap X_1 = \{0\}$

n	dim(U)	time
3	3	0.01 s
4	8	0.03 s
5	13	0.08 s
6	20	0.20 s
7	29	0.49 s
8	39	1.06 s
9	50	2.24 s
10	63	5.56 s

More general statement for arbitrary X

<u>Theorem [JLV]</u>: Suppose that $X \subseteq \mathbb{C}^N$ is a conic variety cut out by $p = \delta \binom{N+d-1}{d}$ linearly independent homogeneous degree-d polynomials $f_1, \ldots, f_p \in \mathbb{C}[x_1, \ldots, x_N]_d$ for some $\delta \in [0,1]$.

Then for a generic linear subspace $U \subseteq \mathbb{C}^N$ of dimension

$$\dim(U) \le \frac{N+d-1}{d!}\delta,$$

it holds that $U \cap X = \{0\}$, and there is an algorithm that certifies this in time $N^{O(d)}$.

<u>Theorem [JLV]:</u> If $X \subseteq \mathbb{C}^N$ is cut out by $p = \delta \binom{N+d-1}{d}$ linearly independent homogeneous degree-d polynomials, then for a generic linear subspace $U \subseteq \mathbb{C}^{\overline{N}}$ of dimension $\dim(U) \leq \frac{N+d-1}{d!}\delta,$ it holds that $U \cap X = \{0\}$, and there is an algorithm that certifies this in time $N^{O(d)}$ Not bad: Takes $\binom{N+d-1}{d}$ time just to read off degree-d polynomials

<u>Example:</u> If d = 1, then $X \subseteq \mathbb{C}^N$ is a linear subspace. Theorem says: If $U \subseteq \mathbb{C}^N$ generic and $\dim(U) \leq \delta N = p = N - \dim(X)$, Then $U \cap X = \{0\}$, and this can be verified in poly(N) time. <u>Theorem [JLV]:</u> If $X \subseteq \mathbb{C}^N$ is cut out by $p = \delta \binom{N+d-1}{d}$ linearly independent homogeneous degree-*d* polynomials, then for a generic linear subspace $U \subseteq \mathbb{C}^N$ of dimension $\dim(U) \leq \frac{N+d-1}{d!} \delta$,

it holds that $U \cap X = \{0\}$, and there is an algorithm that certifies this in time $N^{O(d)}$.

Fact: For a conic variety $X \subseteq \mathbb{C}^N$, if there exists $U \subseteq \mathbb{C}^N$ such that $U \cap X = \{0\}$, then $\dim(X) \leq N - \dim(U)$.Hilbert function of XKrull dimension of XMaximize δ Corollary: $\dim(X) \leq N - \frac{N+d-1}{d!} \delta = N - \frac{N+d-1}{d!} (1 - \frac{h_X(d)}{\binom{N+d-1}{d}})$

Again: An upper bound on dim(X)

Corollary:

For a conic variety
$$X \subseteq \mathbb{C}^N$$
,

$$\dim(X) \le N - \frac{N+d-1}{d!} \left(1 - \frac{h_X(d)}{\binom{N+d-1}{d}}\right) \text{ for all } d \ge 1.$$

Other examples...

- Schmidt rank $\leq r$ vectors: $X_r = \{v \in \mathbb{C}^n \otimes \mathbb{C}^n : \operatorname{rank}(v) \leq r\}$
- <u>Product tensors</u>: $X_1 = \{v_1 \otimes \cdots \otimes v_m : v_1, \dots, v_m \in \mathbb{C}^n\}$ dim(
- Biseparable tensors:

 $X_B = \{T \in (\mathbb{C}^n)^{\otimes m} : \text{Some flattening of } T \text{ has rank 1} \}$

<u>Slice rank 1 tensors</u>

 $X_S = \{T \in (\mathbb{C}^n)^{\otimes m} : \text{Some 1 v.s. all flattening of } T \text{ has rank 1} \}$

Matrix product states:

 $\dim(U) = \Omega_r(n^2)$

$$\lim(U) \sim \frac{1}{4}n^m$$

 $\dim(U) \sim \frac{1}{4} n^m$

$$\dim(U) \sim \frac{1}{4} n^m$$

$$\dim(U) \sim \frac{1}{4} n^m$$

The Algorithm (Nullstellensatz Certificate)

Part 1: Algorithm to certify $U \cap X = \{0\}$

Input:

1. Polynomials $f_1, ..., f_p \in \mathbb{C}[x_1, ..., x_N]$ that cut out *X*.

X

2. A basis $\{u_1, \dots, u_R\}$ for U.

<u>Output:</u> Proof that $U \cap X = \{0\}$

 \boldsymbol{U}

The symmetric subspace

Let $S^d(V) \subseteq V^{\otimes d}$ be the symmetric subspace

$$S^{d}(V) = \left\{ T = \left(T_{i_{1},\dots,i_{d}} \right)_{i_{j} \in [N]} \in V^{\otimes d} : T = \left(T_{i_{\sigma(1)},\dots,i_{\sigma(d)}} \right)_{i_{j} \in [N]} \quad \text{for all} \quad \sigma \in \mathfrak{S}_{d} \right\}$$

 $P_{d,V}^{\vee}: V^{\otimes d} \to V^{\otimes d}$ orthogonal projection onto $S^d(V)$

A characterization of conic varieties

<u>Fact/Definition</u>: For a subset $X \subseteq V$, the following are equivalent:

- 1. *X* is a conic variety
- 2. There exists $d \in \mathbb{N}$ and an orthogonal projection $\Psi_X^d: V^{\otimes d} \to V^{\otimes d}$ such that:

i. Ψ_X^d is symmetric: $\operatorname{Im}(\Psi_X^d) \subseteq S^d(V)$ ii. $X = \{ v \in V : v^{\otimes d} \in \operatorname{Im}(\Psi_X^d) \}$ Why? If X is cut out by $f_1, \dots, f_p \in S^d(V^*)$, let $\Psi_X^d = \operatorname{Proj}\left(\bigcap_{i=1}^p \operatorname{Ker}(f_i)\right)$

$$v \in X \quad \Leftrightarrow \quad f_1(v^{\otimes d}) = \dots = f_p(v^{\otimes d}) = 0 \quad \Leftrightarrow \quad v^{\otimes d} \in \operatorname{Im}(\Psi^d_X)$$

<u>Question</u>: Given a conic variety $X = \{v \in V : v^{\otimes d} \in \operatorname{Im}(\Psi_X^d)\} \subseteq V$ and a basis $\{u_1, \dots, u_R\}$ for a subspace $U \subseteq \mathbb{C}^N$, is $U \cap X = \{0\}$?

 $S^{d}(U) = U^{\otimes d} \cap S^{d}(V)$ $= \operatorname{span}\{P_{d,V}^{\vee}(u_{i_{1}} \otimes \cdots \otimes u_{i_{d}}): 1 \leq i_{1} \leq \cdots \leq i_{d} \leq R\}$ 1. If $\operatorname{Im}(\Psi_{X}^{d}) \cap S^{d}(U) = \{0\}$, output $U \cap X = \{0\}$ 2. Otherwise, output I DON'T KNOW

<u>Correctness</u>: If $Im(\Psi_X^d) \cap S^d(U) = \{0\}$, then $U \cap X = \{0\}$. Proof: If $u \in U \cap X$, then $u^{\otimes d} \in Im(\Psi_X^d) \cap S^d(U)$. <u>Theorem [JLV]</u>: If $X \subseteq \mathbb{C}^N$ is cut out by $p = \delta \binom{N+d-1}{d}$ linearly independent homogeneous degree-*d* polynomials, then for a generic linear subspace $U \subseteq \mathbb{C}^N$ of dimension $\dim(U) \leq \frac{N+d-1}{d!}\delta$, (1) it holds that $\operatorname{Im}(\Psi_X^d) \cap S^d(U) = \{0\}$.

<u>Proof idea</u>: Given a subspace $W := \text{Im}(\Psi_X^d) \subseteq S^d(\mathbb{C}^N)$, show that a (generic) subspace of the form $S^d(U)$, for $\dim(U)$ not too large, satisfies $W \cap S^d(U) = \{0\}$.

<u>Proof idea</u>: Given a subspace $W \subseteq S^d(\mathbb{C}^N)$, show that a (generic) subspace of the form $S^d(U)$, for dim(U) not too large, satisfies $W \cap S^d(U) = \{0\}$.

One might hope that you could take $R \coloneqq \dim(U)$ maximal for which

$$\dim(W) + \binom{N+R-1}{R} \leq \binom{N+d-1}{d}$$
$$\Leftrightarrow \\ \dim(S^d(U)) \quad \dim(S^d(\mathbb{C}^N))$$

<u>Proof idea</u>: Given a subspace $W \subseteq S^d(\mathbb{C}^N)$, show that a (generic) subspace of the form $S^d(U)$, for dim(U) not too large, satisfies $W \cap S^d(U) = \{0\}$.

One might hope that you could take $R \coloneqq \dim(U)$ maximal for which

$$\dim(W) + \binom{N+R-1}{R} \leq \binom{N+d-1}{d}$$

$$3 \qquad 3 \qquad 6$$

Not true! Take N = 3, d = 2, $W = S^2(\mathbb{C}^2) \subseteq S^2(\mathbb{C}^3).$

Then for any $U \subseteq \mathbb{C}^3$ of dimension $\dim(U) = 2$, it holds that $S^2(\mathbb{C}^2) \cap S^2(U) \supseteq S^2(\mathbb{C}^2 \cap U) \neq \{0\}$

<u>Question</u>: Given a conic variety $X = \{v \in V : v^{\otimes d} \in \operatorname{Im}(\Psi_X^d)\} \subseteq V$ and a basis $\{u_1, \dots, u_R\}$ for a subspace $U \subseteq \mathbb{C}^N$, is $U \cap X = \{0\}$?

<u>Complete hierarchy:</u>

1. For $c \ge d$, let $\Psi_X^c = (\Psi_X^d \otimes I_V^{\otimes c-d}) : V^{\otimes c} \to V^{\otimes c}$

2. If $Im(\Psi_X^c) \cap S^c(U) = \{0\}$ for some $c \leq (d+1)^N$, output YES

3. Otherwise, output NO

Correctness:

 $Im(\Psi_X^c) \cap S^c(U) = \{0\} \text{ for some } c \leq (d+1)^N \iff U \cap X = \{0\}$ Proof: \Rightarrow : For any $u \in U \cap X$, it holds that $u^{\otimes c} \in Im(\Psi_X^c) \cap S^c(U)$. \Leftarrow : Hilbert's Nullstellensatz + degree bounds

Outline

Given a conic variety $X \subseteq \mathbb{C}^N$ and a linear subspace $U \subseteq \mathbb{C}^N$, describe $U \cap X$. Algorithms to describe $U \cap X$

- 1. Algorithm to certify $U \cap X = \{0\}$.
- Algorithm to determine dist(U, X).
 - 3. Algorithm to recover elements of $U \cap X$.

Part 2: Algorithm to determine dist(U, X)

X

Input:

- 1. Polynomials $f_1, ..., f_p \in \mathbb{C}[x_1, ..., x_N]$ that cut out *X*.
- 2. A basis $\{u_1, \dots, u_R\}$ for U.

dist(U,X)

<u>Output:</u> Lower bound on dist(U, X)

We have a complete hierarchy of *lower bounds* on dist(U, X)

Making the algorithm robust

$\frac{\text{Observation:}}{\text{Im}(\Psi_X^c) \cap S^c(U) = \{0\} \iff \lambda_{max} \left(P_{d,V}^{\vee} \Psi_X^c(P_U \bigotimes I_V^{\bigotimes c-1}) \right) < 1$

Proof:

 $\lambda_{max} \left(P_{d,V}^{\vee} \Psi_X^c (P_U \otimes I_V^{\otimes c-1}) \right) < 1$ $\Leftrightarrow S^d(V) \cap \operatorname{Im}(\Psi_X^c) \cap \left(U \otimes V^{\otimes c-1} \right) = \{0\}$ $\Leftrightarrow \operatorname{Im}(\Psi_X^c) \cap S^c(U) = \{0\}$

Making the algorithm robust

Observation:

 $\operatorname{Im}(\Psi_X^c) \cap S^c(U) = \{0\} \iff \nu_c \coloneqq \lambda_{max} \left(P_{d,V}^{\vee} \Psi_X^c(P_U \otimes I_V^{\otimes c-1}) \Psi_X^c P_{d,V}^{\vee} \right) < 1$

Proof:

 $\nu_{c} < 1$ $\Leftrightarrow S^{d}(V) \cap \operatorname{Im}(\Psi_{X}^{c}) \cap \left(U \otimes V^{\otimes c-1}\right) = \{0\}$ $\Leftrightarrow \operatorname{Im}(\Psi_{X}^{c}) \cap S^{c}(U) = \{0\}$ <u>Question</u>: Given a conic variety $X = \{v \in V : v^{\otimes d} \in \operatorname{Im}(\Psi_X^d)\} \subseteq V$ and a basis $\{u_1, \dots, u_R\}$ for a subspace $U \subseteq \mathbb{C}^N$, is $U \cap X = \{0\}$?

Complete hierarchy: 1. If $v_c < 1$ for some $c \leq (d + 1)^N$, output YES 2. Otherwise, output NO

Correctness:

 $\nu_c < 1 \quad \Leftrightarrow \quad \operatorname{Im}(\Psi_X^c) \cap S^c(U) = \{0\}$

Robust version

<u>Question</u>: Given a conic variety $X = \{v \in V : v^{\otimes d} \in \operatorname{Im}(\Psi_X^d)\} \subseteq V$ and a basis $\{u_1, \dots, u_R\}$ for a subspace $U \subseteq \mathbb{F}^N$, what is $\operatorname{dist}(U, X)$?

Hausdorff distance

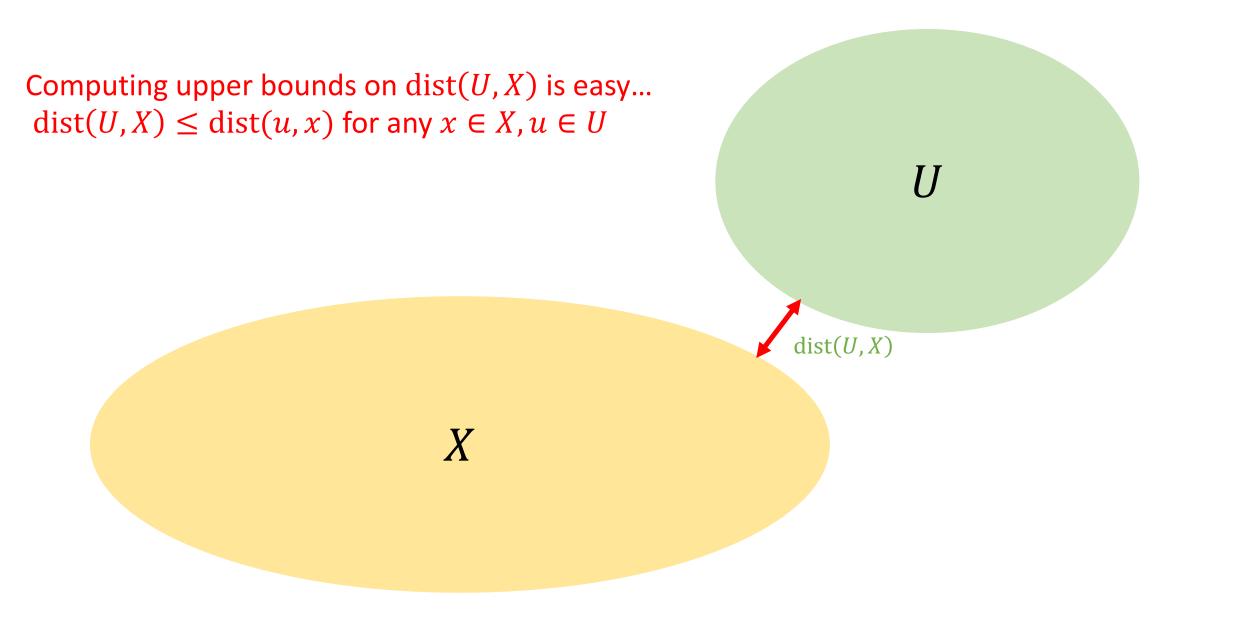
$$dist(U,X) = \frac{1}{4} \min_{\substack{x \in X \\ \|x\|=1}} \min_{\substack{u \in U \\ \|x\|=1}} \|xx^* - uu^*\|_1^2$$

$$= 1 - \max_{\substack{x \in X \\ \|x\|=1}} \max_{\substack{u \in U \\ \|x\|=1}} |\langle x, u \rangle|^2$$

$$= 1 - \max_{\substack{x \in X \\ \|x\|=1}} \langle x, P_U x \rangle$$

<u>Question</u>: Given a conic variety $X = \{v \in V : v^{\otimes d} \in \operatorname{Im}(\Psi_X^d)\} \subseteq V$ and a basis $\{u_1, \dots, u_R\}$ for a subspace $U \subseteq \mathbb{C}^N$, what is $\operatorname{dist}(U, X)$?

Theorem [JLV]: $v_c \coloneqq \lambda_{max} \left(P_{d,V}^{\vee} \Psi_X^c (P_U \otimes I_V^{\otimes c-1}) \Psi_X^c P_{d,V}^{\vee} \right)$ $v_c < 1 \text{ for some } c \le (d+1)^N \text{ if and only if } U \cap X = \{0\}$ $\cdot \operatorname{dist}(U, X) \ge 1 - v_c \text{ for all } c \qquad (\text{inner approximation})$ $\cdot \operatorname{dist}(U, X) = 1 - \lim_{c \to \infty} v_c$



We have a complete hierarchy of *lower bounds* on dist(U, X)

Theorem [JLV]:

$$v_c \coloneqq \lambda_{max} (P_{d,V}^{\vee} \Psi_X^c (P_U \otimes I_V^{\otimes c-1}) \Psi_X^c P_{d,V}^{\vee})$$

 $v_c \equiv 1 \text{ for all } c \leq (d+1)^N \iff \text{dist}(U,X) = 0$
 $v_d \geq v_{d+1} \geq v_{d+2} \geq \cdots$
 $\cdot 1 - \text{dist}(U,X) = \lim_{c \to \infty} v_c$
In particular, $1 - \text{dist}(U,X) \leq v_c$ for all c (inner approximation)
Proof:
 $\text{Im}(P_{d,V}^{\vee} \Psi_X^c) \supseteq \text{span}\{v^{\otimes c} : v \in X\}, \text{ so for all } v \in X,$
 $v_c \geq \langle v^{\otimes c}, P_{d,V}^{\vee} \Psi_X^c (P_U \otimes I_V^{\otimes c-1}) \Psi_X^c P_{d,V}^{\vee} v^{\otimes c} \rangle$
 $= \langle v^{\otimes c}, (P_U \otimes I_V^{\otimes c-1}) v^{\otimes c} \rangle$
 $= \langle v, P_U v \rangle$
... So $v_c \geq \max_{v \in X} \langle v, P_U v \rangle = 1 - \text{dist}(U,X)$

Outline

Given a conic variety $X \subseteq \mathbb{C}^N$ and a linear subspace $U \subseteq \mathbb{C}^N$, describe $U \cap X$. Algorithms to describe $U \cap X$

- 1. Algorithm to determine whether $U \cap X = \{0\}$.
- 2. Algorithm to determine dist(U, X).
- Algorithm to recover elements of $U \cap X$.

Part 3: Algorithm to recover elements of $U \cap X$

X

Input:

- 1. Polynomials $f_1, ..., f_p \in \mathbb{C}[x_1, ..., x_N]$ that cut out *X*.
- 2. A basis $\{u_1, \dots, u_R\}$ for U.

<u>Output</u>: A set of points $\{v_1, \dots, v_s\} \in U \cap X$, and a proof that these are the only elements (up to scalar multiples).

[]

The Algorithm (Inspired by Nullstellensatz Certificate)

Recall the algorithm to determine if $U \cap X = \{0\}$... $S^{d}(U) = U^{\otimes d} \cap S^{d}(V)$ Algorithm: $1. \text{ If Im}(\Psi_{X}^{d}) \cap S^{d}(U) = \{0\}, \text{ output } U \cap X = \{0\}$

2. Otherwise, output I DON'T KNOW

Idea: To find vectors in $U \cap X$, look at the vectors in $\operatorname{Im}(\Psi_X^d) \cap S^d(U)$. If $v = \sum_{i=1}^R \alpha_i u_i \in U \cap X$, then $v^{\otimes d} = \sum_{i_1,\dots,i_d} \alpha_{i_1} \cdots \alpha_{i_d} (u_{i_1} \otimes \cdots \otimes u_{i_d}) \in \operatorname{Im}(\Psi_X^d) \cap S^d(U)$ (1) The tensor of coefficients $\alpha^{\otimes d} \in (\mathbb{C}^R)^{\otimes d}$ is a (symmetric) product tensor! <u>Take-home:</u> vectors in $U \cap X \leftrightarrow$ sym. prod. tensors $\alpha_{i_1\dots i_d}$ that solve (1)

Algorithm to find elements of $U \cap X$

1. Compute a basis $\{A_1, \dots, A_{R'}\} \subseteq (\mathbb{C}^R)^{\otimes d}$ for the set of tensors $\alpha \in S^d(\mathbb{C}^R)$ s.t.

$$\sum_{i_1,\dots,i_d} \alpha_{i_1,\dots,i_d} (u_{i_1} \otimes \dots \otimes u_{i_d}) \in \operatorname{Im}(\Psi_X^d) \cap S^d(U)$$

Find the symmetric product tensors in $\operatorname{span}\{A_1,\dots,A_{R'}\} \subseteq (\mathbb{C}^R)^{\otimes d}$
$$\uparrow_{\operatorname{New} X!} \qquad \qquad \uparrow_{\operatorname{New} U!}$$

Run Jennrich's algorithm

2.

Jennrich's Algorithm

<u>Input</u>: A basis $\{A_1, ..., A_R\}$ for a subspace $\mathbb{Z} \subseteq \mathbb{C}^R \otimes \mathbb{C}^S$ of dimension $R \leq S$

If Z has a basis of the form $\{x_1 \otimes y_1, \dots, x_R \otimes y_R\}$,

where $\{x_1, \dots, x_R\}$ and $\{y_1, \dots, y_R\}$ are linearly independent

Then $x_1 \otimes y_1, ..., x_R \otimes y_R$ are the only elements of $U \cap X_1$, and Jennrich's algorithm outputs these elements. Otherwise, it outputs FAIL.

Note: This version of Jennrich can only handle $\dim(Z) \leq R$, whereas our "lifted Jennrich" can do $\dim(Z) \leq \Omega(R^2)$

<u>Theorem [JLV]: Case of $X_1 = \{v \in \mathbb{C}^n \otimes \mathbb{C}^n : rank(v) \le 1\}$ </u> For a generic linear subspace $U \subseteq \mathbb{C}^n \otimes \mathbb{C}^n$ of dimension

 $R \leq \frac{1}{4}(n-1)^{2}$ Constant multiple of
maximum possible $(n-1)^{2}$ Constant multiple of
maximum possible $(n-1)^{2}$

it holds that $U \cap X_1 = \{0\}$, and our algorithm certifies this in time $n^{O(1)}$.

Moreover, for a generic subspace $U \subseteq \mathbb{C}^n \otimes \mathbb{C}^n$ of this dimension with a basis of generic elements of X_1 , our algorithm recovers these elements in time $n^{O(1)}$, and certifies that these are the only elements of $U \cap X_1$.

Analytic def: "If you pick $v_1, ..., v_R \in X_1$ randomly..." Algebraic def: There is a Zariski open dense subset $A \subseteq X_1^{\times R}$ such that... <u>Corollary</u>: A generic tensor $T \in \mathbb{C}^n \otimes \mathbb{C}^n \otimes \mathbb{C}^m$ with $\operatorname{rank}(T) =: R \leq \min\{\frac{1}{4}(n-1)^2, m\}$ has a unique rank decomposition, which is recovered by

applying our algorithm to $T(\mathbb{C}^m)$.

Analytic def: $T = \sum_{i=1}^{R} x_i \otimes y_i \otimes z_i$, where each $x_i \otimes y_i \otimes z_i$ is chosen randomly.

Algebraic def: There is a Zariski open dense subset $A \subseteq \{rank \leq$ *R* tensors}

<u>Theorem [JLV]</u>: If $X \subseteq \mathbb{C}^N$ is irreducible, cut out by $p = \delta \binom{N+d-1}{d}$ linearly independent homogeneous degree-*d* polynomials, and has no equations in degree d - 1, then for a linear subspace $U \subseteq \mathbb{C}^N$ of dimension

$$R \leq \frac{N+d-1}{d!}\delta,$$

with a basis of generic elements of X, our algorithm recovers these elements in time $N^{O(d)}$.

Algebraic def: There is a Zariski open dense subset $A \subseteq X^{\times R}$ s.t...

(X, \mathbb{C}^m) -decompositions (aka simult. X-decomp)

For
$$T \in V \otimes \mathbb{C}^m$$
, an expression $T = \sum_{i=1}^R v_i \otimes z_i \in V \otimes \mathbb{C}^m$

where $v_1, \ldots, v_R \in X$

we call an (X, \mathbb{C}^m) -decomposition of T.

rank_X(*T*): = min{*R*: there exists an (*X*, \mathbb{C}^m)-decomposition of T of length R}

<u>Corollary</u>: A generic tensor $T \in V \otimes \mathbb{C}^m$ with rank_X $(T) \le \min\{\frac{N+d-1}{d!}\delta, m\}$

has a unique (X, \mathbb{C}^m) -decomposition, which is recovered by applying our algorithm to $T(\mathbb{C}^m)$.

Other examples...

• Schmidt rank $\leq r$ vectors: $X_r = \{v \in \mathbb{C}^n \otimes \mathbb{C}^n : \operatorname{rank}(v) \leq r\}$

Recover (X_r, \mathbb{C}^m) – decompositions of rank $\Omega_r(n^2)$

- <u>Product tensors</u>: $X_1 = \{v_1 \otimes \cdots \otimes v_{k/2} : v_1, \dots, v_{k/2} \in \mathbb{C}^n\}$ Recover tensor decompositions in $(\mathbb{C}^n)^{\otimes k}$ of rank $\sim n^{k/2}$
- Biseparable tensors:

 $X_B = \{T \in (\mathbb{C}^n)^{\otimes m} : \text{Some flattening of } T \text{ has rank 1} \}$

• <u>Slice rank 1 tensors</u> $X_{S} = \{T \in (\mathbb{C}^{n})^{\otimes m} : \text{Some 1 v.s. all flattening of } T \text{ has rank 1} \}$

Not irreducible!

Other examples...

- Schmidt rank $\leq r$ vectors:
- $X_r = \{ v \in \mathbb{C}^n \otimes \mathbb{C}^n : \operatorname{rank}(v) \le r \}$

Recover (X_r, \mathbb{C}^m) – decompositions of rank $\Omega_r(n^2)$

• <u>Product tensors:</u> $X_1 = \{v_1 \otimes \cdots \otimes v_k : v_1, \dots, v_m \in \mathbb{C}^n\}$ Recover tensor decompositions in $(\mathbb{C}^n)^{\otimes k}$ of rank $\sim n^{k/2}$

Related work:

[De Lathauwer, Castaing Cardoso 2007]: Algorithm to decompose symmetric fourth-order tensors

[De Lathauwer 2008]: Algorithm for (X_r, \mathbb{C}^m) -decompositions (also known as "block-term decompositions" and "r-aided ranks")

Conclusion

- <u>Take home message 1</u>: For an arbitrary variety $X \subseteq \mathbb{C}^N$, we can <u>efficiently certify</u> $U \cap X = \{0\}$ for a generic subspace $U \subseteq \mathbb{C}^N$ of dimension not too large. (First level of Nullstellensatz certificate)
- <u>Take home message 2</u>: This inspires a hierarchy of eigenvalue computations to compute the Hausdorff distance between *U* and *X*. (Robust version of Nullstellensatz certificate)
- <u>Take home message 3</u>: Also inspires an algorithm for finding elements of $U \cap X$, with similar genericity guarantees.

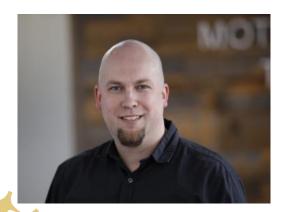
Open problems:

- Non-generic inputs U?
- Remove irreducibility/degree assumptions on the algorithm to find elements of $U \cap X$?

Computing linear sections of varieties: quantum entanglement, tensor decompositions and beyond

Benjamin Lovitz²

Nathaniel Johnston¹



1. Mount Allison University and University of Guelph

2. NSF Postdoc, Northeastern University

3. Northwestern University

IPAM TMRC1

December 14, 2022

Aravindan Vijayaraghavan³

LVX VERITAS Northeastern University