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Xi={rQw:iv,weC'}cC"RQC"

Def: U € C" @ C"is 1-entangled if U N Xl‘/= {0}.

Applications:

*cAPVM 0 <M < [20nC" C"isan entanglement witness <
Im(M) € C* ® C" is 1-entangled T

Tr(Mp) < 1 for every separable state p

* For a density operator p € D(C"* ® C™),

Im(p) 1l-entangled = p is entangled range criterion

e Quantum error correction
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App
of e

ication: Computing the Geometric measure

ntanglement/Injective tensor norm

T TeC'QCQ®C
/.

X i={u@Qvw:uuvweC"}

[Harrow and Montanaro, 2013]: 21 equivalent or closely related
problems in quantum info and computer science, including:
Determining acceptance probability of QMA(2) protocols
Determining ground-state energy of mean-field Hamiltonians




X € CV a conic variety
U < C" alinear subspace

Describe U N X? U

Aist(U, X)

£ Certify U N X = {0}
2. Compute dist(U, X)
3. Find elements of U N X (and show

that these are the only ones)



Connection between finding elements of U N X; and decomposing tensors
LetT € C*" X C* QX C™ be a tensor.

If  T(C™) has a basis of the form {x; @ y;,...,xg @ yr} € C" Q C",

ThenT =Y5.% Qy; ® z;, where z, =T((x; ® y;)*).

...50, algorithms for finding elements of T(C™) N X, lead to
tensor decomposition algorithms

If x; @ vy, ..., xgp @ yr are the only elements of T(C™) N X, (up to scale),
thenT = Y5, x; ® y; ® z; is the unique rank decomposition of T.



X € CV a conic variety
U < C" alinear subspace

Describe U N X?

This talk: These
problems are easy* if U

is generic and dim(U)
is not too large

1. Certify U N X = {0}
2. Compute dist(U, X)
3. Find elements of U N X (and show

that these are the only ones)



Intersecting a subspace with a variety

elet V =CV.

* X ©Visavarietyifitis cut out by some fi, ..., f, € Clxq, ..., xy], i.e.
X=@eV:f (== f =0)

e X is a conic variety if CX = X.

Question: Given a (linear) subspace U € V, describe U N X.




X €V isavariety if it is cut out by some fi, ..., f, € Clxq, ..., xy], i.e.
X=@eV:fiv) == =0}

Example: X, ={veC*®C":rank(v) <1} C*"Q C"

a b a bl._ .
rank [b c] <1 & det [b c] =ac—bd =0
nXn matrix hasrank < 1 &  determinant of every 2X2 submatrix is zero

So X, is cut out by homogeneous polynomials of degree



Other examples...

e Schmidt rank < r vectors:
X, ={veC"® C*rank(v) < r}

* Product tensors: X; = {v; Q - @ vy:vq, ..., v, € C*}

* Biseparable tensors:
X5 = {T € (C)®™: Some flattening of T has rank 1}

* Slice rank 1 tensors
Xs = {T € (C")®™: Some 1 v.s. all flattening of T has rank 1}

 Matrix product states




Outline

Given a conic variety X € C" and a linear subspace U € CV, describe U N X.
Algorithms to describe U N X
== Algorithm to certify U N X = {0}.
2. Algorithm to determine dist(U, X).
3. Algorithm to recover elements of U N X.




Part 1: Algorithm to certify U N X = {0}

Input:
1. Polynomials fi, ..., f, € C[xy, ..., xy] that

cut out X. U
2. Abasis {uq,...,ug} for U.

Output: Proof that




Question: Given a (linear) subspace U € V, certify U N X = {0}.

Example: X; = {v € C" Q C":rank(v) < 1}

Schmidt rank

Wesay U € C" @ C"is 1-entangled if U N X; = {0}.
* [Buss et al 1999]: Determining whether U is 1-entangled is NP-Hard

* [Barak et al 2019]: Best known algorithm for determining
1-entanglement requires e-promise and takes 20(V1/€) time.

* Theorem [JLV 2022]: Polynomial time algorithm if dim(U) is small
enough and U is generic.



Theorem [JLV]: Caseof X, = {v € C" ® C™: rank(v) < 1}
For a generic linear subspace U € C"* @ C™ of dimension

1
dim(U) < —(n — 1)*
4 *~_ Constant multiple of
maximum possible (n — 1)?

it holdg that U N X; = {0}, and our algorithm this in time n%().

If {uq, ..., up} € C* @ C" are chosen independently at
random according to e.g. the uniform spherical measure, then with
probability 1...

There is a Zariski open dense subset A € (C* ® C")*R
such that...



Algorithm performance to certify U N X; = {0}

n dim(U) time

3 3 0.01s
4 3 0.03 s
5 13 0.08 s
6 20 0.20 s
7 29 0.49 s
3 39 1.06 s
9 50 224 s
10 63 5.56 s




More general statement for arbitrary X

Theorem [JLV]: Suppose that X € C" is a conic variety cut out by

p = 6(N+§_1) linearly independent homogeneous degree-d
polynomials fi, ..., f, € C|xy, ..., xy]4 for some § € [0,1].

Then for a generic linear subspace U € C" of dimension

N+d-1

dim(U) < T d,

it holds that U N X = {0}, and there is an algorithm that certifies
this in time N (@),



Theorem [JLV]: If X € CV is cutoutbyp = 6(N+§_1) linearly

independent homogeneous degree-d polynomials, then for a
generic linear subspace U € C" of dimension

N+d-1
dim(U) < T J,

it holds that U N X = {0}, and there is an algorithm that certifies

L 0(d _
this in time V?(¢_ Not bad: Takes (N+g ') time just to read off degree-d
polynomials

Example: If d = 1, then X € C" is a linear subspace. Theorem says:
U < CNgeneric and dim(U) < 6N = p = N — dim(X),
U N X = {0}, and this can be verified in poly(N) time.




Theorem [JLV]: If X € CV is cutoutbyp = 6(N+§_1) linearly

independent homogeneous degree-d polynomials, then for a
generic linear subspace U € C" of dimension

| N+d-1
dim(U) < T J,
it holds that U N X = {0}, and there is an algorithm that certifies
this in time N9(@),

Fact: For a conic variety X € CV, if there exists U € C" such that

UnX = {0}, then dir;(X) < N —dim(U). Hilbert function of X
Krull dimension of X Mlemlze 0 l

Y N+d-1 N+d-1 hy(d)
Corollary: dim(X) < N ~ =N — (1 (NJ’ff"l))



Again: An upper bound on dim(X)

Corollary:
For a conic variety X € CV,

_ N+d—1 hx(d)
dim(X) < N yr (1 (fo{‘l)) foralld = 1.




All in poly(N) time
Other examples...

e Schmidt rank < r vectors:
X, ={veC"® C*rank(v) < r}

* Product tensors: X; = {v;1 & - Q v,;: vq, ..., vy, € C"}

* Biseparable tensors:
X5 = {T € (C)®™: Some flattening of T has rank 1}

* Slice rank 1 tensors
Xs = {T € (C")®™: Some 1 v.s. all flattening of T has rank 1}

 Matrix product states:




The Algorithm
(Nullstellensatz Certificate)



Part 1: Algorithm to certify U N X = {0}

Input:
1. Polynomials fi, ..., f, € C[xy, ..., xy] that

cut out X. U
2. Abasis {uq,...,ug} for U.

Output: Proof that




The symmetric subspace

Let SE(V) € VO be the symmetric subspace

S4V) ={T = (Tilr---»id) e VO T = forall o € 6d}

Py ,:V®% - V¥ orthogonal projection onto S (V)



A characterization of conic varieties

Fact/Definition: For a subset X € V, the following are equivalent:

1. X is a conic variety

2. There exists d € N and an orthogonal projection $%: V®% — y®d
such that:

. \IJX is symmetric: Im(‘P ) c SYV)
i. X ={veV:v®eim(¥?))
Why? If X is cut out by f;, ..., f, € € SH(V*), let W¢= PI‘OJ(ﬂ Ker(f;) )

SAW*) = Flxq, ..., Xyl 4

veX o fi(v¥)=-=,0%)=0 o v® eim(¥y)



Question: Given a conic variety X = {v € V:v®4 € Im(‘Pf})} cV
and a basis {u4, ..., ug} for a subspace U € CV,is U N X = {0}7

STW) = U® nSEV)
Algorithm: j = span{Pyy(u;, ® - Quy,):1< iy <+ <ig <R)
1. 1f Im(Wg) n SE(U) = {0}, output U N X = {0}
2. Otherwise, output | DON'T KNOW

Correctness: If Im(W¢) N S4(U) = {0}, then U n X = {0}.
Proof: If u € U N X, then u®% € Im(¥4) N S4(V). ]




Theorem [JLV]: If X € CV is cutoutbyp = 6(N+§_1) linearly

independent homogeneous degree-d polynomials, then for a

generic linear subspace U € C" of dimension
_ N+d-1
dim(U) < T J, (1)

it holds that Im(W¢) n S4(U) = {0}.

Proof idea: Given a subspace W: = Im(‘Pf}) c S¢(CN), show that a

(generic) subspace of the form S¢(U), for dim(U) not too large,
satisfies W N S2(U) = {0}.



Proof idea: Given a subspace W € S¢(C"), show that a (generic) subspace
of the form S%(U), for dim(U) not too large, satisfies W N S%(U) = {0}.

One might hope that you could take R := dim(U) maximal for which

N+R—1)<(N+d—1)
R d

I I

dim(S4(U))  dim(S%(CM))

dim(W) + (



Proof idea: Given a subspace W € S¢(C"), show that a (generic) subspace
of the form S%(U), for dim(U) not too large, satisfies W N S%(U) = {0}.

One might hope that you could take R := dim(U) maximal for which

4 (W)+(N+R—1)<(N+d—1)
o R /= 4
3 3 6
Not true! Take N = 3,d = 2, W = S§%(C?) € §° (C3).

Then for any U € C3 of dimension dim(U) = 2, it holds that
S$2(C%) NnS?(U) 25%(C*°nU) + {0}



Question: Given a conic variety X = {v € V:v®4 € Im(‘P)‘(Z)} cV
and a basis {u4, ..., ug} for a subspace U € CV,is U N X = {0}7

Complete hierarchy:
1.Forc > d, let ¥y = (‘P)C} X I{?C_d) A A

2. 1f Im(W$) N S€(U) = {0} forsome ¢ < (d + 1)V, output YES
3. Otherwise, output NO

Correctness:

ImM(W5) NSC(U) = {0} forsomec < (d+ 1)V & UnX ={0}

Proof: =: Foranyu € U N X, it holds that u®¢ € Im(W$) N S¢(U).
<: Hilbert’s Nullstellensatz + degree bounds




Outline

Given a conic variety X € C" and a linear subspace U € CV, describe U N X.
Algorithms to describe U N X
1. Algorithm to certify U N X = {0}.
== Algorithm to determine dist(U, X).
3. Algorithm to recover elements of U N X.




Part 2: Algorithm to determine dist(U, X)

Input:
1. Polynomials fi, ..., f, € C[x4, ..., xy] that

cut out X. U
2. Abasis {uq,..,up} for U.

Output: Lower bound on dist(U, X)

We have a complete hierarchy of lower bounds on dist(U, X)



Making the algorithm robust

Observation:
MW NSW) = {0} & Amax(PiyP5SPu@ IFPTH ) < 1

Proof:
Amax(PiyWE(Py® 1771 ) < 1
S SYW)NnIm(PH) N (U Q@ v®e-1) = {0}
S Im(WE) N SE(U) = {0} -




Making the algorithm robust

Observation:
MW NSWU) ={0} & v, = Anax (PYy PPy @ 2 HWERY, ) < 1

Proof:

v, <1
S SYW)NnIm(PE) N (U Q@ v®e-1) = {0}
= Im(PE) N SEU) = {0} ]




Question: Given a conic variety X = {v € V:v®4 € Im(‘PX)} cV
and a basis {u4, ..., ug} for a subspace U € CV,is U N X = {0}7

Ve = Amax(Pc\l/,VLp)?(PU® II(?C_l)LP)?Pc\l/,V )
Complete hi V:

1. If v, < 1forsomec < (d + 1)V, output YES
2. Otherwise, output NO

Correctness:
v, <1 o  Im(¥5) NSEU) = {0 -




Robust version

Question: Given a conic variety X = {v € V: v®% € Im(‘lj)‘})} cl
and a basis {uy, ..., up} for a subspace U € FV, what is dist(UJ, X)?

i 1 i :
dist(U, X) = 7 mip min [lxx* — uw*||3

/ Ixll=1 |lull=1

Hausdorff distance

= 1 — max max |{x, u)|?
xeX uelU
lxl[=1 [[u]l=1

=1- I?E%(X(x, Py x)

Ixll=1



Question: Given a conic variety X = {v € V: v®?¢ ¢ Im(‘Pf})} cV
and a basis {u4, ..., ug} for a subspace U < CV,

— Vi = Amax(Pc{VLp)%(PU@ II(/X)C_l)Lp)?Pc\l/,V )

Theorem [JLV]. -
ey < 1forsomec < (d+ 1)V ifand only if U N X = {0}

e« dist(U,X) =1 —v_ forallc (inner approximation)
e dist(U,X) =1 — lim v,

C— 00




Computing upper bounds on dist(U, X) is easy...
dist(U,X) < dist(u,x) foranyx € X,u € U

/dist(U, X)

We have a complete hierarchy of lower bounds on dist(U, X)



Theorem [JLV]: Ve = Anax (PYyWE(Py® I HWEPY, )
ey =1forallc<(d+ 1V o dist(U,X) =0 \/
*Vag = Vg41 = Vg2 =

1 —dist(U,X) = lim v,

C— 00

In particular, 1 — dist(U, X) < v, for all ¢ (inner approximation)
Proof:

Im(Py,¥5) 2 span{v®“:v € X}, so for all v € X,
ve 2 (v%°, Pay¥x(Py® Ilgc_l)tp)?P&/,VV@C)

= (W&, (Py @ I )v®°)

= (v, Py v)

..Sov, = meag(v, P,v) =1 —dist(U, X) -
v



Outline

Given a conic variety X € C" and a linear subspace U € CV, describe U N X.

Algorithms to describe U N X

1. Algorithm to determine whether U N X = {0}.

2. Algorithm to determine dist(U, X).
==» Algorithm to recover elements of U N X.




Part 3: Algorithm to recover elementsof U N X

Input:
1. Polynomials fi, ..., f, € C[xy, ..., xy] that
cut out X.
2. Abasis {uq,..,up} for U. U

Output: A set of points {v,, ..., v,} € U N X,
and a proof that these are the only elements
(up to scalar multiples).




The Algorithm (Inspired by
Nullstellensatz Certificate)



Recall the algorithm to determineif U N X = {0}...

S4U) = U®4 nSHV)
Algorithm: = span{Py,(u;, @ -~ Qu;,):1<i) <+ <ig <R}
1. 1f Im(Wg) n SE(U) = {0}, output U N X = {0}

2. Otherwise, output | DON'T KNOW

ldea: To find vectors in U N X, look at the vectors in Im(%‘}) N SU).
If v = le a;u; € UNX,then
v = Z ai, "'Of\"d(”il ® - Qu,) Em(Wy)nsW) ()

iq,eig
The tensor of coefficients a®? € (CR)®4 js a (symmetric) product tensor!

Take-home: vectorsin UNX < sym. prod. tensors a;, ;. that solve (1)



Algorithm to find elementsof U N X

1. Compute a basis {4, ..., Ap'} € (CF)®? for the set of tensors a € S¢(CR)
S.t.

z i, i (Ui, ® - @ uyy,) €EIm(PE) N SEU)

i1, id

2. Find the symmetric product tensors in span{4q, ..., Ap’} © ((CR)®d

\ NTX' NTUI

Run Jennrich’s algorithm



Jennrich’s Algorithm
Input: A basis {44, ..., Ar} for a subspace Z € C® ® C° of dimensionR < S

If Z has a basis of the form {x; & V4, ..., xp @ Vr},
where {x4, ..., xg}and {y;, ..., yr} are linearly independent

Thenx; @ Y4, ..., Xp @ yp are the only elements of U N X, and Jennrich’s
algorithm . Otherwise, it outputs

Note: This version of Jennrich can only handle dim(Z) < R, whereas our
“lifted Jennrich” can do dim(Z) < Q(R?)



Theorem [JLV]: Caseof X; = {v € C" ® C™: rank(v) < 1}
For a generic linear subspace U € C" @ C™ of dimension

1 2
R<-(n—1)
4 - Constant multiple of
maximum possible (n — 1)?

it holds that U N X; = {0}, and our algorithm this in time n%).

Moreover, for a generic subspace U € C" @ C™" of this dimension with a basis of
generic elements of X;, our algorithm these elements in time n°*), and
certifiﬁ, that these are the only elements of U N X;.

”If you pick vy, ..., vp € X; randomly...”
There is a Zariski open dense subset A € X;*F such that...



Corollary: A generictensor T € C" @ C" &Q C™ with
1
pank(T) =:R < min{Z (n — 1)%,m}

has a unigye rank decomposition, which is recovered by
applying gur algorithm to T (C™).

T=Y%,x;,®y; ®z;, whereeachx; ® y; ® z; is
chosen randomly.

There is a Zariski open dense subset A € {rank <
R tensors}



Theorem [JLV]: If X € CV is , cutout by p = 6(N+§_1)
linearly independent homogeneous degree-d polynomials, and

, then for a linear subspace U <
C" of dimension

B d! %,
with a basis of generic elements of X, our algorithm recovers these
elements in tipfe N9(@),

There is a Zariski open dense subset A € X*F  s.t...



(X, C™)-decompositions (aka simult. X-decomp)

R
ForT € V Q C™, an expression T=Zvi®zi€V®Cm
=1

l

where v, ..., vp € X
we call an (X, C™)-decomposition of T.

ranky(7T): = min{ R: there exists an (X, C"™)-decomposition of T of length R}



Corollary: A generictensor T € V &Q C™ with
N+d-1
ranky(7T) < min{ T
has a unique (X, C™)-decomposition, which is recovered by
applying our algorithm to T (C™).

o, m}



Other examples...

e Schmidt rank < r vectors:
X, ={veC"® C*rank(v) < r}

Recover (X,,, C™) — decompositions of rank .,-(n?)

* Product tensors: X1 = {v1 & -+ @ Vg 2: V1, v, Vg2 € C}
Recover tensor decompositions in (C™)®k

of rank ~nk/2

e Biseparable tensors:
Xpg = C™M)®™: Some flattening of T has ran

* Slice rank 1 tenso
Xe = CM)®™M: Some 1 v.s. all flattening of T hasrank 1

Not irreducible!



Other examples...

e Schmidt rank < r vectors:
X, ={veC"® C"rank(v) < r}

Recover (X,,, C™) — decompositions of rank ,-(n?)

* Product tensors: X; = {v; Q - Q vy: vy, ..., Uy, € C"*}
Recover tensor decompositions in (C™)®*

of rank ~nk/2

Related work:

[De Lathauwer, Castaing Cardoso 2007]: Algorithm to decompose symmetric fourth-order tensors

[De Lathauwer 2008]: Algorithm for (X,., C"™)-decompositions (also known as “block-term
decompositions” and “r-aided ranks”)



Conclusion

* Take home message 1: For an arbitrary variety X € CV, we can efficiently certify
U N X = {0} for a generic subspace U € CV of dimension not too large. (First
level of Nullstellensatz certificate)

* Take home message 2: This inspires a hierarchy of eigenvalue computations to
compute the Hausdorff distance between U and X. (Robust version of
Nullstellensatz certificate)

e Take home message 3: Also inspires an algorithm for finding elements of U N X,
with similar genericity guarantees.

Open problems:

* Non-generic inputs U?

* Remove irreducibility/degree assumptions on the algorithm to find elements of
UnX?
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