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Computational basis
• Let { 0 , 1 } ⊆ ℂ!be the computational basis for ℂ!

0 = 1
0 1 = 0

1

• Let { 𝑥 : = 𝑥" ⊗⋯⊗ 𝑥# ∶ 𝑥 ∈ {0,1}#} ⊆ (ℂ!)⊗# be the computational basis 
for (ℂ!)⊗#

00 ≔ 0 ⊗ |0⟩ =

1
0
0
0

01 ≔ 0 ⊗ |1⟩ =

0
1
0
0

10 := 1 ⊗ 0 =

0
0
1
0

11 := 1 ⊗ 1 =

0
0
0
1



•A state is a unit vector in (ℂ!)⊗# (mod phase, i.e. an 
element of ℙ!!$%).

•We often omit normalization.

• States in ℂ! are called qubits.

• States in (ℂ!)⊗# are called n-qubit states.

• States are denoted 𝜓 , |𝜙⟩ , etc.

• ⟨𝜓| denotes conjugate-transpose of |𝜓⟩



Quantum circuits
General framework:
1. Prepare a computational basis state |0⋯0⟩ ∈ (ℂ!)⊗# .
2. Apply a unitary matrix to obtain  𝜓 ≔ 𝑈 0⋯0
3. Measure in the computational basis. For 𝑥 ∈ {0,1}#, 𝑝 𝑥 = ⟨𝑥|𝜓⟩ !

Google Sycamore superconducting qubit chip.
n=53 qubits (with errors!!)

Xanadu X8 photonic chip
n=8 qubits (with errors!!)



Quantum circuits
General framework:
1. Prepare a computational basis state |0⋯0⟩ ∈ (ℂ!)⊗# .
2. Apply a unitary matrix to obtain 𝜓 := 𝑈|0⋯0⟩
3. Measure in the computational basis. For 𝑥 ∈ {0,1}#, 𝑝 𝑥 = ⟨𝑥|𝜓⟩ !.

The measurement destroys the state!

Need Ω(2#) repetitions to approximate 𝑝.

Subtle power of quantum computer: You can sample from 𝑝 ∈ ℝ!"
!



Quantum circuits
General framework:
1. Prepare a computational basis state 0⋯0 ∈ (ℂ!)⊗# .
2. Apply a unitary matrix to obtain 𝜓 := 𝑈 0⋯0
3. Partially measure. For 𝑥 ∈ {0,1}$ , 𝑝 𝑥 = ||( 𝑥 ⊗ 𝕀 |𝜓⟩ ||!

𝑘 ≤ 𝑛
Contraction:
Defined as   𝑥%⋯𝑥$ ⊗ 𝕀 𝑦%⋯𝑦# ≔ 𝛿&!,(!⋯𝛿&",(" 𝑦$)%⋯𝑦# ∈ (ℂ!)⊗#*$

on computational basis vectors |𝑦"⋯𝑦#⟩, and extended linearly.



Quantum circuits
General framework:
1. Prepare a computational basis state 0⋯0 ∈ (ℂ!)⊗# .
2. Apply a unitary matrix to obtain 𝜓 := 𝑈 0⋯0
3. Partially measure. For 𝑥 ∈ {0,1}$, 𝑝 𝑥 = ||( 𝑥 ⊗ 𝕀 |𝜓⟩ ||!

Partial measurement  only partially destroys the state.

Leftover state is       %
& '

𝑥 ⊗ 𝕀 𝑈 0⋯0 ∈ (ℂ!)⊗#$( .
Normalization

𝑘 ≤ 𝑛



Quantum circuits
General framework:
1. Prepare a computational basis state |0⟩ ∈ (ℂ!)⊗# .
2. Apply a unitary matrix 𝑈|0⟩
3. Measure in the computational basis. For 𝑥 ∈ {0,1}$, 𝑝 𝑥 = ||(⟨𝑥| ⊗ 𝕀)𝑈 0 ||!
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This talk: Classical simulation of Clifford+T
circuits via stabilizer rank
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Classical simulation of quantum circuits

Question: Given a classical description of a quantum circuit

Can it be simulated efficiently on a classical computer?

|0⟩ U
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Types of simulation
• Strong simulation:

Compute 𝑝 𝑥 for all 𝑥 ∈ {0,1}$.

• 𝜖-Strong simulation:
Find a probability vector ;𝑝 such that

1 − 𝜖 𝑝 𝑥 ≤ ;𝑝 𝑥 ≤ 1 + 𝜖 𝑝 𝑥

• Weak simulation:
Sample elements of 𝑥 ∈ {0,1}$ from a probability distribution ;𝑝 such that 

;𝑝 − 𝑝 % ≤ 𝜖
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𝑥 ∈ {0,1}%

𝑝 𝑥 = ||( 𝑥 ⊗ 𝕀 𝑈 0 ⊗# ||!

for all 𝑥 ∈ {0,1}$.



This talk: Classical simulation of Clifford+T
circuits via stabilizer rank



Clifford circuits

The Clifford group is the group of unitaries 𝑈: ℂ! ⊗# → ℂ! ⊗# generated by 
the Clifford gates

𝐻 =
1
2
1 1
1 −1 𝑆 = 1 0

0 𝑖 𝐶𝑁𝑂𝑇 =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

… and global phases 𝑈 1 = {𝑒+,: 𝜃 ∈ 0,2𝜋 }



The Pauli group on ℂ! is the group of unitaries 𝑈: ℂ! → ℂ!
generated by the Pauli gates

𝑋 = 0 1
1 0 𝑍 = 1 0

0 −1 𝑖𝐼! = 𝑖 1 0
0 1

•As an abstract group, the Pauli group on ℂ! is the central 
product 𝐶) ∘ 𝐷).
• The Clifford group is the normalizer of the 𝑛-fold tensor 

product of the unitary Pauli group.
•Open problem: Character table for Clifford group?



Why Clifford circuits?

1. Implementation

2. Error correction

3. Clifford + any other gate is dense in the unitary group

4. Standard set of gates



Classical simulation of Clifford circuits

Question: Given a classical description of a Clifford circuit

Can it be simulated efficiently on a classical computer?
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Classical simulation of Clifford circuits

Question: Given a classical description of a Clifford circuit

Can it be simulated efficiently on a classical computer?



[Gottesman-Knill 98]: Yes. Clifford 
circuits can be efficiently simulated.

... Strongly, weakly, and 𝜖-strongly

… Even the leftover state       %
& '

𝑥 ⊗ 𝕀 𝑈 0⋯0

can be computed (and represented) efficiently! 



Clifford+T circuits
The Clifford+T group is the unitary group 𝑈: ℂ! ⊗# → ℂ! ⊗# generated by 
the Clifford gates

𝐻 =
1
2
1 1
1 −1 𝑆 = 1 0

0 𝑖 𝐶𝑁𝑂𝑇 =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

.

and T-gates
T = 1 0

0 𝑒+-// .



Classical simulation of Clifford+T circuits

Question: Given a classical description of a Clifford+T circuit

Can it be simulated efficiently on a classical computer?
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Quantum circuits
General framework:
1. Prepare a computational basis state |0⋯0⟩ ∈ (ℂ!)⊗# .
2. Apply a small number of Clifford+T gates 𝑈%𝑈!…𝑈0|0⋯0⟩
3. Measure in the computational basis. For 𝑥 ∈ {0,1}#, 𝑝 𝑥 = ⟨𝑥 𝑈!𝑈"…𝑈# 0⋯0⟩ ".

Subtle power of quantum computer: Can apply 𝑈%𝑈!…𝑈*
efficiently, and sample from 𝑝 ∈ ℝ+!

!
.



This talk: Classical simulation of Clifford+T
circuits via stabilizer rank



• A state |𝜙⟩ ∈ ℂ! ⊗# is a stabilizer state if 𝜙 = 𝑈 0 ⊗# for some 
Clifford circuit 𝑈.

• The stabilizer rank of a state 𝜓 ∈ ℂ! ⊗# , denoted 𝜒(|𝜓⟩),
is the minimum number 𝑟 for which

𝜓 =P
+:%

;

𝑐+|𝜙+⟩

for some 𝑐+ ∈ ℂ and |𝜙+⟩ stabilizer states.

• The 𝛿-approximate stabilizer rank of |𝜓⟩ is
𝜒<(|𝜓⟩) = min{𝜒(|𝜇⟩): 𝜓 − 𝜇 ≤ 𝛿}.

Stabilizer rank



Stabilizer rank
[Bravyi-Smith-Smolin 16, Bravyi-Gosset 16]: A Clifford+T circuit with 𝑛 T-gates
can be simulated…

• Strongly with cost quadratic in 𝜒 |𝐻⟩⊗# .
Compute 𝑝 𝑥 for all 𝑥 ∈ {0,1}$

• 𝜖-Strongly with cost linear in 𝜒 |𝐻⟩⊗# .
Find a probability vector D𝑝 such that 1 − 𝜖 𝑝 𝑥 ≤ D𝑝 𝑥 ≤ 1 + 𝜖 𝑝 𝑥

• Weakly with cost linear in 𝜒< 𝐻 ⊗# .
Sample elements of 𝑥 ∈ {0,1}% from a probability distribution D𝑝 such that 

D𝑝 − 𝑝 " ≤ 𝜖

𝐻 = 0 + 1 + 2 1 ≈ 0 + 2.41|1⟩

|0⟩ U

...
...

...

8
>>>>>>>>><

>>>>>>>>>:

|yi

(9)

20

𝑥 ∈ {0,1}%

𝑝 𝑥 = ||( 𝑥 ⊗ 𝕀 𝑈 0 ⊗# ||!



Proof idea
[GK98]: Clifford circuits can 
be efficiently simulated.

= (𝕀⊗ ⟨1|)𝑈Cliff(𝕀 ⊗ |𝐻⟩)

T = • S

|Hi H S†

23

1|𝐻⟩

U
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So 𝑇 0 = (𝕀⊗ ⟨1|)𝑈Cliff(|0⟩ ⊗ |𝐻⟩)
= (𝕀 ⊗ ⟨1|)𝑈Cliff(|0⟩ ⊗ |0⟩)

+(1 + 2)(𝕀 ⊗ ⟨1|)𝑈Cliff(|0⟩ ⊗ |1⟩)
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|𝜓⟩

Cliff+ 𝑛 T

𝑈



Proof idea
|0⟩ U
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|𝜓⟩

Cliff+ 𝑛 T

𝑈

Let 𝑟 = 𝜒 𝐻 ⊗# and 𝐻 ⊗# = ∑+:%; 𝑐+|𝜙+⟩.

𝜓 = (𝕀⊗ ⟨1…1|)𝑈Cliff(|0⟩ ⊗ 𝐻 ⊗#)
= ∑+:%; 𝑐+(𝕀 ⊗ ⟨1…1|)𝑈Cliff |0⟩ ⊗ |𝜙+⟩

By [GK98], can simulate each efficiently.
= 𝑈Cliff

+ |0⟩

[GK98]: Clifford circuits can 
be efficiently simulated.

= (𝕀⊗ ⟨1|)𝑈Cliff(𝕀 ⊗ |𝐻⟩)



Known bounds on stabilizer rank
𝜒 𝐻 ⊗#

• [Huang-Newman-Szegedy 20]: 𝜒 𝐻 ⊗# super-polynomial unless P=NP.
• [Bravyi-Smith-Smolin 16]: 𝜒 𝐻 ⊗# ≥ Ω( 𝑛).
• [Peleg-Shpilka-Volk 21]: 𝜒 𝐻 ⊗# ≥ Ω(𝑛).

• [Qassim-Pashayan-Gosset 21]: 𝜒 𝐻 ⊗# ≤ 2=#, where 𝛼 = %
/
log! 3 .

𝜒< 𝐻 ⊗#

• [Peleg-Shpilka-Volk 21]:
There exists 𝛿 > 0 such that      𝜒< 𝐻 ⊗# ≥ Ω 𝑛/ log 𝑛

• [Bravyi-Gosset 16]: 𝜒< 𝐻 ⊗# ≤ 𝑂 %
<#
2=> , where 𝛼 ≈ 0.228.

This talk: Alternate proofs up to log factor



Rest of talk
Lower	bounds
• 𝜒 𝐻 ⊗# ≥ Ω 𝑛/ log 𝑛 .
• There exists 𝛿 > 0 such that 𝜒< 𝐻 ⊗# ≥ Ω 𝑛/ log 𝑛 .

Upper bounds
• Generic stabilizer rank

Image: https://fishingbooker.com/blog/california-state-fish-golden-trout-garibaldi/

Match [Peleg, Shpilka, Volk 22] up to log factor



Fact: If 𝜙 ∈ (ℂ!)⊗# is a stabilizer state,
then the coordinates of 𝜙 are 
{0, ±1,±𝑖} (up to normalization).



Theorem [Dehaene, De Moor 03]: 

𝜙 ∈ (ℂ")⊗$ is a stabilizer state ⟺ 𝜙 = ∑%∈' 𝑖( % −1 ) % 𝑥 ,

where           𝐴 ⊆ 𝔽"$ is an affine linear subspace
𝑙: 𝔽"$ → 𝔽" is a linear function
𝑞: 𝔽"$ → 𝔽" is a quadratic polynomial

Most results on stabilizer rank, and modern proofs of [GK98], 
use this characterization!

Identify {0,1}! with 𝔽"!



Subset-sum representations
• Let 𝛼 ∈ ℂ$ , 𝛽 ∈ ℂ;. We say 𝛽 is a subset-sum representation of 𝛼 if each 𝛼?

is equal to the sum of some subset of {𝛽%, … , 𝛽;}.

• Example: 𝛽 = (1,2) is a subset-sum representation of 𝛼 = 1,2,3 .

• Example: If 𝜓 = ∑+:%; 𝑐+|𝜙+⟩ is a stabilizer decomposition, then       
𝛽 = 𝑐%, … , 𝑐; , −𝑐%, … , −𝑐; , 𝑖𝑐%, … , 𝑖𝑐; , −𝑖𝑐%, … , −𝑖𝑐; ∈ ℂ/;

is a subset-sum representation of |𝜓⟩.
|𝜙,⟩ stabilizer ⇒coordinates are in {0, ±1,±𝑖}

⇒ 𝜒 |𝜓⟩ ≥ %
)
⋅ (the size of the smallest subset-sum rep of 𝜓 )



• Let 𝛼 ∈ ℂ$ , 𝛽 ∈ ℂ;. We say 𝛽 is a subset-sum representation of 𝛼 if each 𝛼?
is equal to the sum of some subset of {𝛽%, … , 𝛽;}.

• Trivially, r ≥ log! 𝑘, since {𝛽%, … , 𝛽;} has just 2; different subsets.

• Theorem [Moulton 01]: If 2 𝛼? ≤ 𝛼?)% for all 𝑗 ∈ {1, … , 𝑘 − 1}, then         
𝑟 ≥ 𝑘/log!𝑘.

• Example: If 𝛼 = (2%, 2!, … , 2$), then 𝑟 ≥ 𝑘/log!𝑘

𝛼 exponentially increasing

Linear in 𝑘, instead of logarithmic!

Lower bounds on the size of a subset-sum rep

2" 2! 2- 2. 2/ 20 21 22

𝛽" 𝛽! 𝛽- 𝛽. 𝛽/ 𝛽0 𝛽1



• Let 𝛼 ∈ ℂ$ , 𝛽 ∈ ℂ;. We say 𝛽 is a subset-sum representation of 𝛼 if each 𝛼?
is equal to the sum of some subset of {𝛽%, … , 𝛽;}.

• Trivially, r ≥ log! 𝑘, since {𝛽%, … , 𝛽;} has just 2; different subsets.

• Theorem [Moulton 01]: If 2 𝛼? ≤ 𝛼?)% for all 𝑗 ∈ {1, … , 𝑘 − 1}, then         
𝑟 ≥ 𝑘/log!𝑘.

• Example: If 𝛼 = (2%, 2!, … , 2$), then 𝑟 ≥ 𝑘/log!𝑘

• Theorem [Lovitz-Steffan]: If the coordinates of |𝜓⟩ contain an exponentially 
increasing sequence of length 𝑘, then 𝜒(|𝜓⟩) ≥ 𝑘/(4log! 𝑘).

𝛼 exponentially increasing

Linear in 𝑘, instead of logarithmic!

Lower bounds on the size of a subset-sum rep



Lower bound on stabilizer rank

• Theorem [Lovitz-Steffan]: If the coordinates of |𝜓⟩ contain an exponentially 
increasing sequence of length 𝑘, then 𝜒(|𝜓⟩) ≥ 𝑘/(4log! 𝑘).

Corollary [Lovitz-Steffan]: 𝜒(|𝐻⟩⊗#) ≥ 𝑛/(4 log! 𝑛).

Proof:  Since 𝐻 ≈ 0 + 2.41 1 ,

𝐻 ⊗# ≈ 0⋯0 + 2.41 0⋯01 +⋯+ 10⋯0 +⋯+ 2.41 # 1⋯1 .

⇒ 𝐻 ⊗# contains the exponentially increasing sequence (2.41,2.41!, … , 2.41#)

⇒ 𝜒(|𝐻⟩⊗#) ≥ 𝑛/(4 log! 𝑛) by boxed theorem.



Lower bound on approximate stabilizer rank

• The 𝛿-approximate stabilizer rank of a normalized state |𝜓⟩ is
𝜒<(|𝜓⟩) = min{𝜒(|𝜇⟩): 𝜓 − 𝜇 ≤ 𝛿}.

• Theorem [Lovitz-Steffan]: There exists 𝛿 > 0 for which    
𝜒<( 𝐻 ⊗#) ≥ 𝑛/ 4 log! 𝑛 .

Proof sketch: Show that for 𝛿 small enough, any state that is 𝛿-close to 
𝐻 ⊗# must contain an exponentially increasing sequence of length 𝑛

(Use De Moivre-Laplace).

Result follows from boxed theorem.



Rest of talk
Lower	bounds
• 𝜒 𝐻 ⊗# ≥ Ω 𝑛/ log 𝑛 .
• There exists 𝛿 > 0 such that 𝜒< 𝐻 ⊗# ≥ Ω 𝑛/ log 𝑛 .

Upper bounds
• Generic stabilizer rank

Image: https://fishingbooker.com/blog/california-state-fish-golden-trout-garibaldi/

Match [Peleg, Shpilka, Volk 22] up to log factor



Upper bounds: Generic stabilizer rank

• Let 𝜒# = max{𝜒 𝜓 ⊗# : 𝜓 ∈ ℂ!} be the 𝑛-th generic stabilizer rank.

• 𝜒# ≥ max{𝑛 + 1, 𝜒 𝐻 ⊗# } Question: Super-linear lower bound on 𝜒#?

• Fact: 𝜒 𝜓 ⊗# = 𝜒# for all but finitely many 𝜓 ∈ ℂ! (up to scale).

• Proposition [Lovitz-Steffan]: 𝜒# = 𝑂 2#/!

(Slight improvement of recent bound 𝑂( 𝑛 + 1 2#/!) of [Qassim-Pashayan-Gosset 21])

• Fact: There exists a single set of 𝜒# stabilizer states that can be superimposed 
to produce any state of the form 𝜓 ⊗#.         Q: Describe such a set?



Summary
Classical	simulation	of	Clifford+T circuits	via	stabilizer	rank

Lower	bounds
• 𝜒 𝐻 ⊗# ≥ Ω 𝑛/ log 𝑛 .
• There exists 𝛿 > 0 such that 𝜒< 𝐻 ⊗# ≥ Ω 𝑛/ log 𝑛 .

Upper bounds
• Generic stabilizer rank

Match [Peleg, Shpilka, Volk 22] up to log factor

https://thumbs.dreamstime.com/b/goldfish-gold-fish-bowl-cute-cartoon-character-happy-145738808.jpg
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