
Project Description

Introduction

The PI uses geometric and combinatorial techniques to study tensor decompositions, with appli-
cations in algebraic statistics and quantum information theory. A tensor is a multilinear map. These
objects naturally generalize matrices, and are ubiquitous in math and science. They can be used
to describe nearly any dataset, and any pure (or even, mixed) quantum state. A decomposition of a
tensor T is an expression of T as a sum of “elementary tensors,” which are defined according to
the application. For a fixed choice of elementary tensors, the rank of T is the minimum number of
elementary tensors that can appear in a decomposition of T.

Tensor decompositions are useful in many areas. An important question in quantum infor-
mation is whether quantum computers can be efficiently simulated by classical computers. This
question can be partially resolved by determining the rank of a certain tensor, with elementary
tensors given by the set of stabilizer tensors [4]. In many other contexts, the elementary tensors are
chosen to be the product tensors (i.e. elements of the Segre variety), and the rank of a tensor under
this choice is called its tensor rank. In quantum physics, product tensors represent unentangled
(pure) quantum states, and the tensor rank captures, to some extent, the amount of entanglement
present in a state [7]. In complexity theory, the tensor rank of the matrix multiplication tensor
precisely quantifies the number of arithmetic operations required for matrix multiplication [5]. In
data science, if a tensor represents a dataset, then a tensor rank decomposition can be used to both
compress and interpret the data. If the tensor has only one tensor rank decomposition (i.e. the de-
composition is unique), then there is only one consistent interpretation of the data. For this reason,
uniqueness is very useful in data processing [25].

Research objective, methods, and significance

The PI’s research objectives are two-fold:

1. Further develop a matroid theory for product tensors, and use this to study tensor decom-
positions.

2. Develop our understanding of quantum entanglement as a resource for quantum informa-
tion processing. In particular:

(a) Determine the most useful quantum states for distributed information processing tasks.
(b) Construct and certify entanglement in linear subspaces.
(c) Classify the invertible maps that can create entanglement.
(d) Prove bounds on stabilizer rank.

In the remainder of this project description, the PI will describe the significance of each ob-
jective, detail his previous work and research methods, and outline his plans for future work. He
will then describe how this project will contribute to his career development, justify his choice of
sponsoring scientist and host institution, and comment on the broader impacts of this project.

Objective 1: Matroid theory for product tensors

A decomposition of a tensor T into product tensors is completely described by the set of product
tensors that appear in the decomposition. Since matroid theory is dedicated to studying (abstrac-
tions of) sets of vectors, a natural approach to studying tensor decompositions is to characterize



the matroidal structure of sets of product tensors. Despite this, and quite surprisingly, this angle
remains largely unexplored. Nevertheless, the PI has found that there is quite a lot of structure,
and strong applications to well-known tensor problems.

Problem 1. Characterize the matroidal structure of sets of product tensors.

The PI conjectured a “splitting theorem” for sets of product tensors in [28], which he recently
proved with Fedor Petrov [31]. In brief, the splitting theorem gives sufficient conditions for a set
of product tensors to split (i.e. to be disconnected as a matroid). An immediate corollary to the
splitting theorem is a generalization of Kruskal’s theorem.

Kruskal’s theorem, dating back to 1977, is a famous and widely-used sufficient condition for a
tensor rank decomposition to be unique [26]. Until now, the only known extensions of Kruskal’s
theorem have used Kruskal’s original permutation lemma. As a result, these extensions suffer sim-
ilar drawbacks as Kruskal’s theorem does, namely, they require the so-called “k-ranks” to be above
a certain threshold. The PI’s generalization uses a completely new proof technique, strengthens
and unifies many of these extensions, and does not require the k-ranks to be large. Aside from
generalizing Kruskal’s theorem, the splitting theorem also implies several other powerful results.
For example, it implies a lower bound on tensor rank which generalizes Sylvester’s matrix rank
inequality; and it implies uniqueness-type results for non-rank decompositions (decompositions
of a tensor into a non-minimal number of product tensors), which appear to be the first known
results of this kind.

Given the strong applications of the splitting theorem, it is natural to ask what more can be
said in regards to Problem 1. In the remainder of this section, the splitting theorem is described in
more detail, and specific, approachable sub-problems of Problem 1 are identified for future work.

For vector spaces V and W over a field F, a product tensor is a non-zero tensor of the form
v⊗w ∈ V ⊗W . (This definition extends naturally to more than two factors, and many of the state-
ments below also generalize to this setting.) The PI finds it useful to regard a multiset of product
tensors {v1 ⊗ w1, . . . , vn ⊗ wn} as a product V ◦ W of matroid representations V = {v1, . . . , vn}
and W = {w1, . . . , wn}, which he calls the Hadamard product.

Splitting theorem (Lovitz-Petrov [31]): If rank(V ◦W) ≤ rank(V) + rank(W)− 2, then V ◦W splits
(i.e. is disconnected as a matroid).

In the theorem statement, rank(·) denotes the dimension of the span. An interesting and ap-
proachable sub-problem of Problem 1 is to describe the Hadamard product of binary and ternary
matroids. In these cases, it can be shown that the Hadamard product is a well-defined product
of matroids, and not just of representations. The splitting theorem already provides a step toward
resolving this sub-problem. If the splitting theorem is any indication, further progress on this sub-
problem could have strong implications for tensor decompositions over F2 and F3. Tensor rank
over F2 has deep connections to algebraic complexity theory and coding theory [5, Chapter 18].

As further angles on Problem 1, the PI is developing a robust version of the splitting theorem
with Aravindan Vijayaraghavan, which would in particular imply a generalization of a recent
robust version of Kruskal’s theorem [3]. The PI is also collaborating with Luca Chiantini, Fedor
Petrov, and Pierpaola Santarsiero to use the splitting theorem and previous ideas developed for
Waring rank decompositions to find more uniqueness results.

The PI first came to conjecture the splitting theorem while studying the following question,
which he introduced in [29]: Given a set of unit vectors {v1, . . . , vn} ⊆ Cd, when does there exist
a positive integer m and an isometry U : Cd → (C2)⊗m such that Uva is a product tensor for all
a ∈ [n]? The PI’s question has become a topic of recent interest in quantum information [6, 39, 27].



Objective 2: Develop our understanding of quantum entanglement as a resource

A pure (quantum) state is a normalized tensor in a tensor product of C-vector spaces, modulo phase.
More generally, a (quantum) state is a probabilistic mixture of pure quantum states, or equivalently,
a positive semi-definite operator of unit trace [37].

In order to build a quantum computer, and further our understanding of the physical universe,
it is paramount to better understand quantum entanglement as a resource [35, 21]. To this end, the
PI will pursue the following objectives.

Objective 2(a): Determine the most useful quantum states for distributed tasks

It is practical to ask which entangled states are the most useful for non-local quantum information
processing. A natural non-local setting occurs when multiple spatially separated parties wish to
jointly execute some task, but can only perform quantum operations within their own laboratories.
Assuming that the parties are allowed to use pre-shared entanglement to help them perform the
task, what are the most useful entangled states for them to share?

Problem 2. What are the most useful entangled states for non-local quantum information processing?

In the two-party setting, we know that the most useful state is (the local unitary orbit of) the
canonical maximally entangled state, as it can be locally converted into any other two-way state [34].
However, in the multi-party setting this question remains unanswered. A natural sub-problem is
to determine the most useful states for specific, fundamental tasks.

In recent work, the PI studied with Nathaniel Johnston the task of local state discrimination
[30]. For a given entangled pure state T, the number of generic pure states that can be locally
discriminated with pre-shared entanglement T was computed. It was found that this number is
precisely the Krull dimension of the orbit closure of T under the action of the product general
linear group. In quantum information circles, this orbit is known as the SLOCC orbit of T. An
immediate, yet surprising consequence is that a Zariski-open-dense (full-measure) set of states T
maximize this dimension, and hence are maximally useful for local state discrimination.

As further steps toward resolving Problem 2, the PI intends to determine the most useful states
for other fundamental multi-party tasks, such as multi-party quantum key distribution [15] and
the multi-party quantum XOR game [38].

Objective 2(b): Construct and certify entanglement in linear subspaces

We say that a linear subspace of matrices is (ε, r)-entangled if every pure state in that subspace has
distance greater than ε from the set of pure states of rank ≤ r. Entangled subspaces have appli-
cations in quantum error correction [17, 36], quantum tomography [18], entanglement witnesses
[1, 23, 24], and one of the most important open problems in quantum information [20]:

Problem 3. For a positive integer r, do there exist quantum states that are non-positive under partial
transposition (NPT) and are not r-distillable?

A quantum state ρ is called r-distillable if ρ⊗r can be locally transformed into a maximally
entangled (two-way) state, and ρ is called distillable if ρ⊗r can be locally transformed into a non-
vanishing number of maximally entangled states as r → ∞. It is known that there exist NPT states
that are not 1-distillable, but Problem 3 remains open for r = 2.

By a clever reduction due to Michał and Paweł Horodecki, Problem 3 is equivalent to asking
whether a certain linear subspace of matrices is (ε, 2)-entangled, for a certain constant ε [19]. In



ongoing work with Nathaniel Johnston and Aravindan Vijayaraghavan, the PI has developed a
technique to efficiently certify that a linear subspace is (ε, r)-entangled, by considering a certain
linear relaxation of the defining system of polynomial equations. The PI is optimistic that this will
be a fruitful step forward in approaching Problem 3.

In related work with Nathaniel Johnston, the PI has obtained new explicit constructions of en-
tangled subspaces [30], which can be used to construct entanglement witnesses, quantum measure-
ments which certify entanglement [1, 23, 24]. Also related, with Nathaniel Johnston and Daniel
Puzzouli, the PI has introduced a method to quantify “how good” a positive linear map is for
detecting entanglement [24].

Objective 2(c): Classify the invertible maps that can create entanglement

The border rank of a pure quantum state T is the smallest integer r for which T can be approximated
arbitrarily well by tensors of rank at most r. The border rank naturally quantifies the amount of
entanglement present in T [7]. It is natural to ask which quantum operations can increase entan-
glement [16]. We say that an invertible linear map is r-entangling if it can increase the border rank
of a border-rank-r pure state.

Problem 4. Describe the r-entangling invertible maps.

It is known that every operator that is not a composition of local operators and swaps is 1-
entangling [22]. In ongoing work, the PI has developed a technique to study r-entanglers using
secant multidrop lines, revealing a connection between this problem and recent studies of border
rank sub-multiplicativity [8, 2]. The PI has used this technique to completely characterize the 2-
entanglers, and uncovered the first examples of non-entanglers that are non-local and non-swap.
In collaboration with William Slofstra and Fulvio Gesmundo, the PI has developed a technique
to computationally determine the r-entanglers using Lie theory. In collaboration with William
Slofstra, the PI is mentoring an undergraduate student, Daniel Han, with the goal of implementing
this computation in Sage and resolving Problem 4 for r ≥ 3.

Objective 2(d): Prove bounds on stabilizer rank

Many resources are being dedicated to building a quantum computer. It is therefore important to
make sure that quantum computers could indeed outperform classical computers.

Problem 5. Can quantum computers be efficiently simulated by classical computers?

In similar spirit to how the computational cost of matrix multiplication can be reduced to
determining the tensor rank of the matrix multiplication tensor, Problem 5 is closely related to
determining the stabilizer rank of n-qubit quantum states. A polynomial upper bound on the sta-
bilizer rank of a certain class of states would imply a positive answer to Problem 5, whereas an
exponential lower bound would imply a negative answer for state-of-the-art classical simulation
protocols [4].

In recent work with Vincent Steffan, the PI has introduced techniques from algebraic geome-
try and number theory to bound the stabilizer rank [32]. In particular, he has refined a number-
theoretic theorem of Moulton to exhibit an explicit sequence of quantum states with exponential
stabilizer rank but constant approximate stabilizer rank, and to provide alternate (and simpli-
fied) proofs of the best-known asymptotic lower bounds on stabilizer rank and approximate sta-
bilizer rank, up to a log factor. He has also uncovered the first non-trivial examples of quantum
states with multiplicative stabilizer rank under the tensor product. Finally, he has used algebraic-
geometric techniques to prove new bounds on the generic stabilizer rank.



Contribution to career development

This project will enable the PI to develop his career in academia and collaborate with researchers
at the host institution. The NSF support will allow the PI to dedicate more time towards research
than would be possible under the heavy teaching load of other postdoctoral appointments. The
PI’s intended research will help him establish himself in his field, and the support for travel will
enable him to continue to share his research at conferences and workshops. The PI will also receive
valuable mentorship from the sponsoring scientist, Harm Derksen.

Justification of sponsoring scientist and host institution

The PI will perform the activities outlined in this proposal at Northeastern University under the
supervision of the sponsoring scientist, Harm Derksen. Northeastern University has several dis-
tinguished faculty members with whom the PI would value the opportunity to interact. In partic-
ular, the research of Paul Hand, Christopher King, Valerio Toledano Laredo, and Gabor Lippner in
machine learning, quantum information theory, representation theory, and quantum walks align
closely with the PI’s interests. The Geometry, Physics, and Representation Theory seminar as well
as the CS Theory seminar at Northeastern University attract researchers with interests relevant to
the PI.

The sponsoring scientist has strong expertise in quiver representations, applied algebraic ge-
ometry, and representation theory, which he has used extensively to study tensor decomposi-
tions [12, 11, 14, 13]. The PI expects to benefit greatly from the sponsoring scientist’s knowledge
of these fields, as they are quite relevant to his research objectives. Indeed, the PI has already
found applications of algebraic geometry and representation theory in Objectives 2(a)-(d). In Ob-
jective 2(d), the set of tensors of fixed stabilizer rank forms a subspace arrangement, a special
kind of quiver representation that the sponsoring scientist has extensively studied [9, 10, 33]. For
Objective 1, since a matroid representation is a special kind of quiver representation, the PI and
sponsoring scientist have discussed a possible extension of the splitting theorem to quiver repre-
sentations.

Broader impacts

During this project, the PI will undertake several initiatives to counteract the gender and socioe-
conomic disparity that permeates our STEM community. The PI will mentor high school stu-
dents from Boston’s underserved communities by participating in the “Bridge to Calculus” pro-
gram. This summer program, developed collaboratively between Northeastern University and the
Boston public school system, helps students prepare for college-level math. The PI will also serve
as a mentor in the 501(c) non-profit “Science Club for Girls” program, held in Cambridge, which
provides free STEM training for K-12 girls on Saturdays.

The PI will also pursue opportunities to mentor student research. In particular, the PI intends
to supervise undergraduate students through Northeastern University’s MATH 4020, a research
capstone project for juniors and seniors.



References

[1] Remigiusz Augusiak, Jordi Tura, and Maciej Lewenstein. A note on the optimality of decom-
posable entanglement witnesses and completely entangled subspaces. Journal of Physics A:
Mathematical and Theoretical, 44(21):212001, 2011.

[2] Edoardo Ballico, Alessandra Bernardi, Fulvio Gesmundo, Alessandro Oneto, and Emanuele
Ventura. Geometric conditions for strict submultiplicativity of rank and border rank. Annali
di Matematica Pura ed Applicata (1923-), 200(1):187–210, 2021.

[3] Aditya Bhaskara, Moses Charikar, and Aravindan Vijayaraghavan. Uniqueness of tensor
decompositions with applications to polynomial identifiability. Journal of Machine Learning
Research, (35):742–778, 2014.

[4] Sergey Bravyi, Graeme Smith, and John A. Smolin. Trading classical and quantum computa-
tional resources. Physical Review X, 6:021043, 2016.

[5] Peter Bürgisser, Michael Clausen, and Mohammad A Shokrollahi. Algebraic complexity theory,
volume 315. Springer Science & Business Media, 2013.

[6] Yu Cai, Baichu Yu, Pooja Jayachandran, Nicolas Brunner, Valerio Scarani, and Jean-Daniel
Bancal. Entanglement for any definition of two subsystems. Physical Review A, 103:052432,
2021.

[7] Lin Chen, Eric Chitambar, Runyao Duan, Zhengfeng Ji, and Andreas Winter. Tensor rank
and stochastic entanglement catalysis for multipartite pure states. Physical Review Letters,
105:200501, 2010.

[8] Matthias Christandl, Fulvio Gesmundo, and Asger Kjærulff Jensen. Border rank is not mul-
tiplicative under the tensor product. SIAM Journal on Applied Algebra and Geometry, 3(2):231–
255, 2019.

[9] H. Derksen and J. Sidman. A sharp bound for the Castelnuovo–Mumford regularity of sub-
space arrangements. Advances in Mathematics, 172:151–157, 2001.

[10] Harm Derksen. Hilbert series of subspace arrangements. Journal of Pure and Applied Algebra,
209(1):91–98, 2007.

[11] Harm Derksen. On the nuclear norm and the singular value decomposition of tensors. Foun-
dations of Computational Mathematics, 16(3):779–811, 2016.

[12] Harm Derksen and Gregor Kemper. Computational invariant theory. Springer, 2015.

[13] Harm Derksen and Visu Makam. On non-commutative rank and tensor rank. Linear and
Multilinear Algebra, 66(6):1069–1084, 2018.

[14] Harm Derksen and Jerzy Weyman. An introduction to quiver representations, volume 184.
American Mathematical Society, 2017.

[15] Michael Epping, Hermann Kampermann, Dagmar Bruß, et al. Multi-partite entanglement
can speed up quantum key distribution in networks. New Journal of Physics, 19(9):093012,
2017.
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